P2Y12 receptor gene polymorphism and the risk of resistance to clopidogrel: A meta-analysis and review of the literature

Guozhen Cui1, B–D, Shaoyan Zhang2, B–D, Jia Zou1, B, C, E, Yang Chen1, A, E, Hao Chen2, A, E, F

1 Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zunyi Medical University, Zhuhai, China
2 Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of article

Abstract

A number of investigators have evaluated the association between T744C, G52T and C34T polymorphisms in the P2Y12 receptor gene and clopidogrel resistance (CR), but the results of their research are controversial. To quantify the evidence addressing this issue, we performed a meta-analysis of all available studies to evaluate the above association between the 3 different P2Y12 genotypes and CR in patients suffering from cardiovascular diseases. This study included articles up to October 2015. We performed a systematic search of PubMed, Embase, Web of Science, Cochrane database, China National Knowledge Infrastructure (CNKI) and WanFang database. Articles meeting the inclusion criteria were included and accumulated by meta-analysis including 5769 participants from 15 individual studies. For G52T polymorphism, a significant relationship between the P2Y12 receptor gene and CR was found under the dominant genetic model (p < 0.05). There was a clear positive correlation between the C34T polymorphism and CR under the dominant, recessive, additive genetic models, respectively (p < 0.05). The evidence from the present meta-analysis indicates that P2Y12 receptor gene C34T and G52T polymorphism might be a risk factor for the poor response to the platelet in patients on clopidogrel therapy, whereas a lack of association was found for T744C polymorphism examined by various genetic models.

Key words: polymorphism, cardiovascular diseases, resistance, clopidogrel, P2Y12

DOI

10.17219/acem/63745

Copyright

Copyright by Author(s)

This is an article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Increased platelet activation and thrombus formation are involved in the development and progression of cardiovascular diseases (CVDs). Current oral anti-platelet agent thienopyridine clopidogrel inhibits adenosine diphosphate (ADP) binding to platelet ADP receptor P2Y\textsubscript{12} on the platelet surface, and thus inhibits platelet aggregation. P2Y\textsubscript{12} has been shown to trigger platelet activation when stimulated in this receptor. Clopidogrel is effective in decreasing platelet activation and the subsequent risk of atherosclerosis-related CVDs including myocardial infarction, coronary heart disease and ischemic stroke. However, in recent years, the concept of clopidogrel resistance (CR) or poor responsiveness, is increasingly evoked in the cardiac literature.

The mechanisms of CR have not been fully characterized but are likely to be multifactorial, involving possible genetic polymorphisms, drug interaction and variable absorption or metabolism. Five polymorphisms (T744C, C34T G52T, ins801A and C139T) of the P2Y\textsubscript{12} gene have been identified by Fontana et al. It has been proposed that genetic polymorphisms of the platelet surface receptor affect the responsiveness to clopidogrel. Some have suggested that polymorphisms of T744C and C34T G52T contribute to CR. However, this proposal is controversial, because other studies have shown that the correlations between the mutational statuses and poor response to clopidogrel therapy were not statistically significant. Thus, in the present study, a meta-analysis including 5769 patients with CVDs was performed to clarify whether or not clopidogrel response to the platelet may be affected by P2Y\textsubscript{12} receptor gene polymorphism in patients with various types of CVDs. This study may help to identify the correct therapeutic approach for each individual patient with CVDs in order to maximize the therapeutic effect.

Methods

Search strategies

Published studies on the association between P2Y\textsubscript{12} receptor gene polymorphism and CR were retrieved by searching the following English and Chinese bibliographic databases: PubMed, Embase, Web of Science, Cochrane database, China National Knowledge Infrastructure (CNKI) and WanFang database. The search strategy was based on the following keywords: “P2Y\textsubscript{12}” or “T744C” or “C34T” or “G52T” and “polymorphism” or “mutation” or “genotype” or “allele” and “clopidogrel” and “resistance” or “response.” The literature search was updated to October 2015.

Statistical analysis

The strength of the association between P2Y\textsubscript{12} gene polymorphism and CR was represented by odds ratios (OR) and 95% confidence intervals (CI). The OR and 95% CI were calculated according to 3 genetic models of inheritance: dominant (homozygotes + heterozygotes vs wild-type homozygotes), recessive (wild-type homozygotes + heterozygotes vs heterozygotes), and additive (heterozygotes + homozygotes vs wild-type homozygotes + heterozygotes). Heterogeneity between the results of different studies was examined using a χ^2 test. A 2-side value of $p < 0.05$ was considered statistically significant as previously described. A fixed effects model was used when $p < 0.05$, and a random effects was used when $p > 0.05$. All analyses were performed by RevMan, v. 5.2 for Windows (Cochrane Collaboration, Oxford, UK) using our previously described method.

Results

Study selection and characteristics

As shown in Fig. 1, 297 relevant studies were identified using the key words by a computerized search of PubMed, Embase, Web of Science, Cochrane database, CNKI and WanFang database. According to the selection criteria as described in methods, 14 studies were included for meta-analysis. Of the studies, there were 9 comparisons for T744C polymorphism, 7 and 6 comparisons for G52T and C34T, respectively. The studies were conducted in France, the United States, China, Croatia, Egypt, and the Czech Republic. The characteristics of the studies included in this meta-analysis are presented in Table 1.
Table 1. Characteristics of the studies included in the meta-analysis

<table>
<thead>
<tr>
<th>Position</th>
<th>First author</th>
<th>Year</th>
<th>Country</th>
<th>Disease</th>
<th>Dose (mg)</th>
<th>Definition of CR</th>
<th>CR</th>
<th>NCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T744C</td>
<td>Cuisset13</td>
<td>2007</td>
<td>France</td>
<td>ACS</td>
<td>600</td>
<td>HPDR = ADP-induced aggregation > 70%</td>
<td>106</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Lev14</td>
<td>2007</td>
<td>USA</td>
<td>PAD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Wang18</td>
<td>2009</td>
<td>China</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>36</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Sun17</td>
<td>2011</td>
<td>China</td>
<td>CAD</td>
<td>300</td>
<td>HPDR = ADP-induced aggregation > 70%</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Galic6</td>
<td>2013</td>
<td>Croatia</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Zohier4</td>
<td>2013</td>
<td>Egypt</td>
<td>ACS</td>
<td>NA</td>
<td>HPDR = ADP-induced aggregation > 70%</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Shi16</td>
<td>2013</td>
<td>China</td>
<td>cerebral infarction</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Chen12</td>
<td>2014</td>
<td>China</td>
<td>ischemic stroke</td>
<td>75</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Shi15</td>
<td>2014</td>
<td>China</td>
<td>cerebral infarction</td>
<td>75</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>G52T</td>
<td>Wang18</td>
<td>2009</td>
<td>China</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Bonello18</td>
<td>2010</td>
<td>France</td>
<td>CAD</td>
<td>600</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sun17</td>
<td>2011</td>
<td>China</td>
<td>CAD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>37</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Liu8</td>
<td>2011</td>
<td>China</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Li19</td>
<td>2014</td>
<td>China</td>
<td>CAHD</td>
<td>75</td>
<td>percent inhibition of ADP < 10%</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Chen12</td>
<td>2014</td>
<td>China</td>
<td>ischemic stroke</td>
<td>75</td>
<td>percent inhibition of ADP < 10%</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Zhao15</td>
<td>2015</td>
<td>China</td>
<td>ACS</td>
<td>75</td>
<td>HPDR = ADP-induced aggregation > 70%</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>C34T</td>
<td>Wang18</td>
<td>2009</td>
<td>China</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Sun17</td>
<td>2011</td>
<td>China</td>
<td>CAD</td>
<td>600</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>91</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Galic6</td>
<td>2013</td>
<td>Croatia</td>
<td>CHD</td>
<td>300</td>
<td>percent inhibition of ADP ≤ 10%</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Tang12</td>
<td>2013</td>
<td>China</td>
<td>ACS</td>
<td>300</td>
<td>percent inhibition of ADP < 30%</td>
<td>53</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Li19</td>
<td>2014</td>
<td>China</td>
<td>CAHD</td>
<td>75</td>
<td>percent inhibition of ADP < 10%</td>
<td>74</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Zhao15</td>
<td>2015</td>
<td>China</td>
<td>ACS</td>
<td>75</td>
<td>HPDR = ADP-induced aggregation > 70%</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>

CR – clopidogrel resistance; NCR – non-clopidogrel resistance; ACS – acute coronary syndrome; HPDR – high post-treatment platelet reactivity; PAD – peripheral arterial disease; CHD – coronary heart disease; CAD – coronary artery disease; AMI – acute myocardial infarction; NA – not applicable; CAHD – coronary atherosclerotic heart disease.

Quantitative data synthesis

The conclusions based on the included studies showed that: (1) P2Y12 receptor gene T744C polymorphism had no association with CR (OR: 0.88, 95% CI: 0.58–1.33, p = 0.54), (2) CVD cases with CR had a significantly higher frequency of CT and TT genotypes (OR: 1.45, 95% CI: 1.14–1.85, p = 0.003) than the CC (wild type) genotype of G52T under the dominant genetic model, (3) an association between P2Y12, C34T polymorphism and CR was detected under the recessive (OR: 2.19, 95% CI: 1.44–3.34, p = 0.0003), dominant (OR: 2.30, 95% CI: 1.50–3.51, p = 0.0001) and additive (OR: 0.57, 95% CI: 0.47–0.71, p < 0.00001) genetic models. These results revealed that mutant genotypes (G52T/C34T) of the P2Y12 receptor gene might be associated with an increased risk of CR.

Subgroup analysis and sensitivity analysis

For T744C and C34T polymorphisms, high heterogeneity was observed (I² = 63%) according to the reported quantifying heterogeneity approach.10 Subgroup analysis of the T744C genetic polymorphism was performed to determine the potential sources of the heterogeneity (Table 2). We classified the studies based on the geographic region (European and American, Asian). In the results, whether geographic region was adjusted or not, this association did not change (p > 0.05). For the G52T polymorphism, we did not perform a subgroup analysis due to the limited number of included studies (only 2 studies included from European and American regions). We removed one study by Galic et al. in the review due to T744C genotype distribution in the control groups of these studies deviating from the Hardy-Weinberg equilibrium (HWE) and found that the association (OR = 1.17, 95% CI: 0.86–1.60, p = 0.32) was not significantly altered after exclusion of the study, indicating that the result of the meta-analysis was stable.6 In addition, potential publication bias or heterogeneity was detected using visual as-
assessment of the Begg’s funnel plot calculated by RevMan analyses. Funnel plots (Fig. 5) display symmetrical distribution of OR estimations, suggesting no publication bias.

Discussion

The strength of our study is the statistically most extensive studies to date addressing whether the risk of CR is associated with the frequencies of P2Y12 receptor gene T744C, C34T and G52T genotypes in patients with CVDs. In the current review, 15 independent studies were included, comprised of 1829 patients with CR and 3940 patients without CR. For the first time, we used meta-analysis to summarize that there was probably a significant association between P2Y12 receptor gene G52T/C34T polymorphism and CR.

The P2Y12 receptor, activated by ADP, plays a critical
role in platelet aggregation and is a target of antiplatelet therapeutic agents that has proven therapeutic value. One of the first successful drugs is clopidogrel. Clopidogrel is a prodrug and its metabolite inhibits ADP receptor-mediated platelet aggregation. Clopidogrel is a milestone in the development of antiplatelet therapy and entails a reduction in the risk of atherothrombotic event, which is the leading cause of CVDs. However, the concept of CR or poor responsiveness is increasing evoked in the cardiac literature in antiplatelet response. Although numerous association studies reflecting the influence of P2Y12 receptor gene polymorphisms on CR have been published, the results are controversial, possibly because of variations in heterogeneous population, sample sizes and other issues. A meta-analysis by systematically combining all the results of individual studies increases the power to detect an association.

In the current meta-analysis, we did not find a significant association between the T744C polymorphism and CR in various genetic models. This finding suggests that the T744C polymorphism may not be susceptible to CR in patients with CVDs. In contrast, we also found that patients with a higher frequency of homozygous and heterozygous (TT + GT) genotypes of G52T had a higher risk of CR than wild-type (GG) genotypes (p = 0.003). For C34T polymorphism, despite the statistical heterogeneity of the studies associating P2Y12 receptor gene C34T polymorphism under the dominant genetic model (p = 0.002,
G. Cui, et al. Clopidogrel resistance and P2Y12 SNP

References