ORIGINAL PAPERS

Adv Clin Exp Med 2014, **23**, 3, 463–467 ISSN 1899–5276

© Copyright by Wroclaw Medical University

JUN-BEOM PARK

Effects of the Combination of Fibroblast Growth Factor-2 and Bone Morphogenetic Protein-2 on the Proliferation and Differentiation of Osteoprecursor Cells*

Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Abstract

Objectives. Fibroblast growth factor (FGF) plays a critical role in bone growth; FGF-2 is known to be an important regulator of osteoblast activity because it stimulates osteoblast replication and decreases differentiation markers. Bone morphogenetic protein-2 (BMP-2) has been shown to be an active inducer of osteoblast differentiation and stimulates expression of mineralization-associated genes.

Material and Methods. The dose-dependent impact of FGF-2 and BMP-2 on the cellular proliferation and differentiation of osteoprecursor cells was evaluated. The alkaline phosphatase activity (ALP) test was performed to assess differentiation, and protein expressions related to bone formation were measured using the Western blot analysis.

Results. Cultures grown in the presence of FGF at 20 ng/mL showed significantly increased value when compared with control group and cultures loaded with FGF-2 at 20 ng/mL, and BMP-2 at 100 ng/mL showed significant decrease in cellular proliferation when compared with cultures loaded with FGF-2 at 20 ng/mL. The ALP activity increased when cells were treated with 10 and 100 ng/mL BMP-2, with relative ALP activity of 213.1% and 312.5%, respectively, when ALP activity of the uncontrolled control was considered 100%. However, when 100 ng/mL BMP-2 was combined with 20 ng/mL FGF-2, the relative increase reached up to 392.2%, but this did not reach a statistically significant increase when compared with 100 ng/mL BMP-2 alone.

Conclusions. Within the limits of this study, BMP-2 significantly enhanced osteoblast differentiation but combined delivery of FGF-2 and BMP-2 did not produce synergistic effects on osteoblast differentiation under the current experimental condition (**Adv Clin Exp Med 2014, 23, 3, 463–467**).

Key words: bone morphogenetic protein 2, differentiation, fibroblast growth factor 2, osteoblast, proliferation.

Fibroblast growth factor (FGF) plays a critical role in bone growth and development, affecting osteogenesis and chondrogenesis [1]. FGF-2 is known to be an important regulator of osteoblast activity because it stimulates osteoblast replication and decreases differentiation markers such as alkaline phosphatase and type 1 collagen [2, 3]. Bone morphogenetic protein-2 (BMP-2) has been shown to be an active inducer of osteoblast differentiation and stimulates expression of mineralization-associated genes [4–6].

A previous study showed that sequential supplementation of FGF-2 followed by BMP-2

showed high alkaline phosphatase activity and abundant bone matrix formation [7]. Controversial opinions exist regarding the combined effects of FGF-2 and BMP-2 in differentiation of the osteoblast. In some reports, FGF-2 augmented recombinant human BMP-2-induced osteoinductive activity [8]. In other reports, combined delivery of FGF-2 and BMP-2 resulted in an inhibitory effect on osteogenesis [9].

This study aimed at examining the dose-dependent impact of FGF-2 and BMP-2 on the differentiation of osteoprecursor cells. In addition, impact of the molecule on cell viability was evaluated.

^{*} This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014003106).

464 J. B. Park

The alkaline phosphatase activity (ALP) test was performed to assess differentiation and protein expressions related to bone formation, including osteopontin, and estrogen receptor- α was measured using the Western blot analysis to evaluate the underlying mechanism.

Material and Methods

Cell Culture and Cellular Proliferation

MC3T3-E1 murine calvarial osteoprecursor cells were plated at a density of 1.0×10^4 cells//mL/well in twelve-well plates. The cultures were maintained in α -minimum essential medium (α MEM; Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (Invitrogen) and antibiotics (100 U/mL of penicillin and streptomycin 100 µg/mL, Invitrogen). Cells were stimulated with BMP-2 and FGF-2 at final concentrations of 10 ng/mL to 100 ng/mL for BMP-2 and 2 ng/mL to 20 ng/mL for FGF-2, respectively.

The effects of BMP-2 and FGF-2 on the cellular proliferation of the preosteoblasts were assessed after 24 h. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reagents were then added at a final concentration of 0.5 mg/mL, and the cells were incubated for 1 hour at 37°C [10]. Rinsing with phosphate-buffered saline (PBS, pH 7.4) was followed by the addition of dimethyl sulfoxide (DMSO; Sigma). After complete dissolution with gentle shaking, aliquots were transferred into 96-well plates and absorbance was recorded at 560 nm and 670 nm with the microplate spectrophotometer system (BioTek, Winooski, VT).

Alkaline Phosphatase Activity Assays

The ALP assay for osteoblast differentiation was performed after two days. MC3T3-E1 murine calvarial preosteoblasts were grown in an osteogenic differentiation medium (α MEM supplemented with 50 µg/mL ascorbic acid [Sigma, St. Louis, MO]) and 10 mM β -glycerolphosphate (Sigma) to induce osteogenic differentiation. Cells were lysed with a buffer containing 10 mM Tris–HCl (pH 7.4) and 0.2% Triton X-100 and were then sonicated for 20 s at 4°C. Samples were incubated with 10 mM p-nitrophenylphosphate as a substrate in 100 mM glycine buffer (pH 10.5) containing 1 mM MgCl₂ at 37°C in a water bath. Total protein content was measured in comparison with a series of bovine serum albumin as internal standards. The

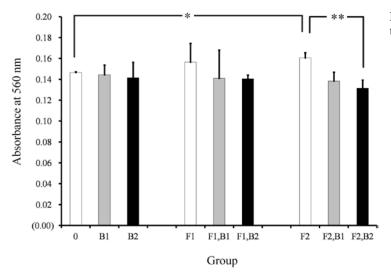
absorbance at 405 nm was measured using a microplate reader, and ALP activities were normalized with respect to total protein content [11, 12].

Western Blot Analysis

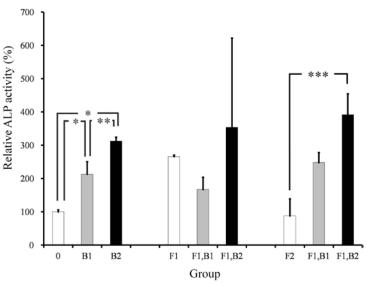
MC3T3-E1 cells were washed with ice-cold PBS and solubilized with lysis buffer. The lysates were centrifuged at 14,000 rpm for 20 min at 4°C. The supernatants were boiled in a sodium dodecyl sulfate sample buffer containing β -mercaptoethanol. Equal amounts of cell extracts were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then transferred onto polyvinylidene fluoride microporous membrane (Immobilon-P membranes; Millipore Corporation, Billerica, MA). Membranes were then blocked in 0.1% (v/v) phosphate-buffered saline and Tween 20 containing 5% (w/v) powdered milk. The membrane was immunoblotted with the mouse antibodies against osteopontin (Santa Cruz Biotechnology, Santa Cruz, CA) and estrogen receptor-α (Cell Signaling Technology, Inc., Danvers, MA). The membrane was incubated with horseradish peroxidase-conjugated secondary antibody and then the washed blot was developed using enhanced chemiluminescence detection kits [13, 14].

Statistical Analysis

Data were represented as means ± standard deviation of the experiments. One-way analysis of variance (ANOVA) was performed to determine differences between groups using a commercially available program (SPSS 12 for Windows, SPSS Inc., Chicago, IL). The level of significance value considered was 0.05.


Results

Cellular Proliferation


Cultures grown in the presence of FGF at 20 ng/mL showed significantly increased value when compared with the control group (P < 0.05) (Fig. 1). Cultures loaded with FGF-2 at 20 ng/mL and BMP-2 at 100 ng/mL showed a significant decrease in cellular proliferation when compared with cultures loaded with FGF-2 at 20 ng/mL (P < 0.05).

Alkaline Phosphatase Activity Assays

The ALP activity increased when cells were treated with BMP-2, with highest value at 100 ng/mL, when compared with the non-loaded

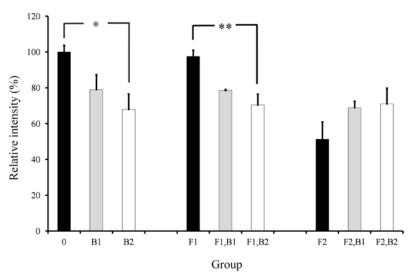
Fig. 1. Determination of cellular proliferation using the MTT assay

Fig. 2. Relative value of ALP activity. *A statistically significant increase was observed when compared with the control (non-loaded group) (P < 0.05). **A significant difference was seen when compared with the 10 ng/mL BMP-2 group (P < 0.05). ***A significant difference was seen when compared with the 2 ng/FGF-2 group (P < 0.05)

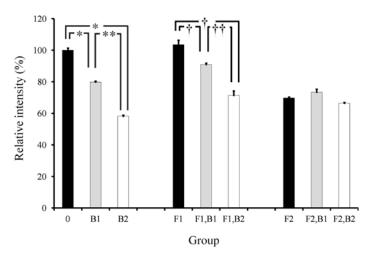
control (P < 0.05) (Fig. 2). The ALP activity increased accordingly when 10 ng/mL and 100 ng/mL BMP-2 was added to the FGF-2 loaded groups at 20 ng/mL concentration, with a significant difference at 100 ng/mL BMP-2 (P < 0.05).

Western Blot Analysis

Western blot analysis was performed to detect protein expression following treatment with FGF-2 and BMP-2 (Figs 3, 4). The results seemed to show that the addition of BMP-2 decreased the expression of osteopontin, with significant difference at 100 ng/mL (Fig. 3). Osteopontin expression decreased accordingly when 10 ng/mL and 100 ng/mL BMP-2 was added to the 2 ng/mL FGF-2 loaded groups, with a significant difference at 100 ng/mL BMP-2 (P < 0.05).


The results showed that the addition of BMP-2 decreased the expression of estrogen receptor- α (Fig. 4). Estrogen receptor- α expression decreased when 10 ng/mL and 100 ng/mL BMP-2 was added to the 2 ng/mL FGF-2 loaded groups.

Discussion


This report examines the combined effects of FGF-2 and BMP-2 on cellular proliferation, differentiation, and protein expression of osteoblast progenitor cells under predetermined concentrations (2 and 20 ng/mL FGF-2; 10 and 100 ng/mL BMP-2). In addition, evaluations were conducted to identify whether combinations of FGF-2 and BMP-2 produce effects additively, synergistically, or competitively.

The MTT assay was used in this study to evaluate osteoblast proliferation because it is considered a more sensitive assay than the trypan blue assay [15]. The trypan blue assay is based on the principle that live cells possess intact cell membranes that exclude penetration of the dye, but the MTT assay assesses cellular proliferation through the determination of mitochondrial dehydrogenase activity [10]. Significant increase of cellular proliferation was only achieved with the 20 ng/mL FGF. The inhibitory effect of BMP-2 on cellular proliferation was seen when 20 ng/mL FGF-2 was

466 J. B. Park

Fig. 3. Western blot analysis to detect the protein expressions of osteopontin. *A significant difference was seen when compared to the control (nonloaded group) (P < 0.05). **A significant difference was seen when compared with the 2 ng/FGF-2 group (p < 0.05)

Fig. 4. Quantitative analysis of the protein expressions of estrogen receptor- α by densitometry

administered simultaneously. There could be variations in doses related to the stimulatory or inhibitory effects on cellular proliferation, depending on the culturing period and stage of cells [4, 8, 6, 17].

The ALP activity may be considered an early marker of osteoblastic cell differentiation and this was used to evaluate the osteoblast differentiation [13, 18]. When 10 and 100 ng/mL BMP-2 were loaded alone, the relative increase of the ALP activity was 213.1% and 312.5%, respectively. However, when 100 ng/mL BMP-2 was combined with 20 ng/mL FGF-2, the relative increase reached up to 392.2%, but this did not reach a statistically significant increase when compared with 100 ng/mL BMP-2 alone. This suggests that combined delivery of FGF-2 and BMP-2 did not show synergistic effects on osteoblast differentiation under the current experimental condition.

The Western blot analysis was performed to detect protein expression of osteopontin and estrogen receptor- α to provide information on the possible mechanism. Osteopontin is reported to be an important regulator of bone remodeling, and it may act as a negative regulator in osteogenic

differentiation [13, 19]. This study showed that BMP-2 seemed to produce a tendency toward a dose-dependent increase in OPN expression. It was also seen that addition of BMP-2 affected the expression of estrogen receptor- α .

The combined effects of FGF-2 and BMP-2 on osteoblast differentiation still appear to be controversial [8, 9]. Recent reports showed that different effects were noted from old and young cell cultures [4]. Coadministration of FGF-2 and BMP-2 increased mineralization in cell cultures from elderly mouse and human bones but not in young mouse calvarial cultures. The different responses to combined delivery of FGF-2 and BMP-2 may in part be attributed to the type of cells, the stage of differentiation of the cells, the culturing condition, or the culturing period [20]. Further elucidation of the mechanisms by which FGF-2 and BMP-2 affect osteoblast differentiation may be warranted to improve application of FGF-2 and BMP-2.

Within the limits of this study, BMP-2 significantly enhanced osteoblast differentiation but combined delivery of FGF-2 and BMP-2 did not produce synergistic effects on osteoblast differentiation under the current experimental condition.

References

- [1] Mansukhani A, Bellosta P, Sahni M, Basilico C: Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 2000, 149, 1297–1308.
- [2] Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT: Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem 2002, 277, 36181–36187.
- [3] Sobue T, Naganawa T, Xiao L, Okada Y, Tanaka Y, Ito M, Okimoto N, Nakamura T, Coffin JD, Hurley MM: Over-expression of fibroblast growth factor-2 causes defective bone mineralization and osteopenia in transgenic mice. J Cell Biochem 2005, 95, 83–94.
- [4] Kuhn LT, Ou G, Charles L, Hurley MM, Rodner CM, Gronowicz G: Fibroblast Growth Factor-2 and Bone Morphogenetic Protein-2 Have a Synergistic Stimulatory Effect on Bone Formation in Cell Cultures From Elderly Mouse and Human Bone. J Gerontol A Biol Sci Med Sci 2013.
- [5] **Hughes-Fulford M, Li CF:** The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res 2011, 6, 8.
- [6] Park JB, Lee JY, Park HN, Seol YJ, Park YJ, Rhee SH, Lee SC, Kim KH, Kim TI, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP: Osteopromotion with synthetic oligopeptide-coated bovine bone mineral *in vivo*. J Periodontol 2007, 78, 157–163.
- [7] Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 2007, 1, 306–313.
- [8] Tanaka E, Ishino Y, Sasaki A, Hasegawa T, Watanabe M, Dalla-Bona DA, Yamano E, van Eijden TM, Tanne K: Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity. Ann Biomed Eng 2006, 34, 717–725.
- [9] Wang H, Zou Q, Boerman OC, Nijhuis AW, Jansen JA, Li Y, Leeuwenburgh SC: Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration *in vivo*. J Control Release 2012, 166, 172–181.
- [10] Park JB, Zhang H, Lin CY, Chung CP, Byun Y, Park YS, Yang VC: Simvastatin Maintains Osteoblastic Viability While Promoting Differentiation by Partially Regulating the Expressions of Estrogen Receptors alpha. J Surg Res 2012, 174, 278–283.
- [11] Park JB: The effects of dexamethasone, ascorbic acid, and beta-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J Surg Res 2012, 173, 99–104.
- [12] Park JB: Combination of simvastatin and bone morphogenetic protein-2 enhances differentiation of osteoblastic cells by regulating the expressions of phospho-Smad1/5/8. Exp Ther Med 2012, 4, 303–306.
- [13] Park JB: Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression. J Craniofac Surg 2011, 22, 1880–1882.
- [14] Park JB: Effects of doxycycline, minocycline, and tetracycline on cell proliferation, differentiation, and protein expression in osteoprecursor cells. J Craniofac Surg 2011, 22, 1839–1842.
- [15] Meleti Z, Shapiro IM, Adams CS: Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 2000, 27, 359–366.
- [16] Moursi AM, Winnard PL, Winnard AV, Rubenstrunk JM, Mooney MP: Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate Craniofac J 2002, 39, 487–496.
- [17] Nakamura Y, Tensho K, Nakaya H, Nawata M, Okabe T, Wakitani S: Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone 2005, 36, 399–407.
- [18] Park JB: Effects of low dose of estrone on the proliferation, differentiation, and mineralization of the osteoprecursor cells. Exp Ther Med 2012, 4, 681–684.
- [19] Huang W, Carlsen B, Rudkin G, Berry M, Ishida K, Yamaguchi DT, Miller TA: Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells. Bone 2004, 34, 799–808.
- [20] Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an *in vitro* model of osteoblast development. J Bone Miner Res 1992, 7, 683–692.

Address for correspondence:

Jun-Beom Park
Department of Periodontics
Seoul St Mary's Hospital, College of Medicine
The Catholic University of Korea
222 Banpo-daero, Seocho-gu, Seoul 137-701
Republic of Korea
Tel.: +82 18 32 26 51
E-mail: jbassoonis@yahoo.co.kr

Received: 3.06.2013 Revised: 31.01.2014 Accepted: 9.06.2014