Advances in Clinical and Experimental Medicine
2020, vol. 29, nr 1, January, p. 107–113
doi: 10.17219/acem/112608
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Analysis of the rRNA methylation complex components in pediatric B-cell precursor acute lymphoblastic leukemia: A pilot study
1 Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Poland
2 The Université Claude Bernard Lyon 1, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, France
3 Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Poland
Abstract
Background. Dysregulation of ribosome biogenesis and alteration of ribosome composition, including alteration in ribosomal RNA (rRNA) 2’-O-ribose methylation, can play a role in malignant transformation and cancer progression. Several studies recently reported that components of the rRNA methylation complex are associated with leukemogenesis. However, no study ever investigated the alteration of ribosome biogenesis factors in the most common pediatric malignancy – B-cell precursor acute lymphoblastic leukemia (BCP-ALL).
Objectives. The objective of this study was to examine the expression of factors building the rRNA methylation complex, either the protein components (1 methyl-transferase (FBL), NOP56, NOP58, NHP2L1) or some RNA components (box C/D snoRNAs: SNORD35B, SNORD65, SNORD46, SNORD50A, SNORD38B), as well as CMYC, and nucleolin (NCL) – a protein involved in rRNA synthesis. Clinical effects in children with BCP-ALL were also investigated.
Material and Methods. The factors involved in ribosome biogenesis were studied in 28 children with BCP-ALL with the use of real-time polymerase chain reaction (RT-PCR) using the BioMark HD System (Fluidigm, San Francisco, USA) in cDNA prepared from the bone marrow samples collected at diagnosis.
Results. Strong correlations were observed between NOP56, NOP58 and NCL, and multiple weaker correlations were observed in the box C/D snoRNA category, and between box C/D snoRNA and transcripts coding proteins of the rRNA methylation complex. The expression of analyzed transcripts did not correlate with the initial white blood cells count (WBC) or with bone marrow blast percentage. Ribosome biogenesis upregulation with overexpression of FBL and NOP56, and CMYC was found in patients who subsequently relapsed and the upregulation signature was not associated with known risk predictors.
Conclusion. This is the first report on the clinical aspect of ribosome biogenesis in pediatric BCP-ALL, and it shows that overexpression of CMYC and C/D box nucleoproteins FBL and NOP56 is an antecedent event in patients who subsequently relapse. The dysregulation pattern is different from the previous reports in acute myeloid leukemia (AML), suggesting that dysregulation of ribosome biogenesis is specific for BCP-ALL.
Key words
pediatric, methylation, relapse, acute lymphoblastic leukemia (ALL), ribosome
References (34)
- WHO Europe. Incidence of childhood leukaemia. http://www.euro.who.int/__data/assets/pdf_file/0005/97016/4.1.-Incidence-of-childhood-leukaemia-EDITED_layouted.pdf.
- Möricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–284. doi:10.1038/leu.2009.257
- Gachet S, El-Chaar T, Avran D, et al. Deletion 6q drives T-cell leukemia progression by ribosome modulation. Cancer Discov. 2018;8(12):1614–1631. doi:10.1158/2159-8290.CD-17-0831
- Warner WA, Spencer DH, Trissal M, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–163. doi:10.1182/bloodadvances.2017006668
- Marcel V, Catez F, Berger CM, et al. Expression profiling of ribosome biogenesis factors reveals nucleolin as a novel potential marker to predict outcome in AML patients. PLoS One. 2017;12(1):e0170160. doi:10.1371/journal.pone.0170160
- Zhou F, Liu Y, Rohde C, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19(7):844–855. doi:10.1038/ncb3563
- Bellodi C, McMahon M, Contreras A, et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep. 2013;3(5):1493–1502. doi:10.1016/j.celrep.2013.04.030
- Valleron W, Laprevotte E, Gautier E-F, et al. Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia. 2012;26(9):2052–2060. doi:10.1038/leu.2012.111
- Marcel V, Catez F, Diaz J-J. Ribosomes: The future of targeted therapies? Oncotarget. 2013;4(10):1554–1555. doi:10.18632/oncotarget.1511
- Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer. 2013;13(5):299–314. doi:10.1038/nrc3496
- Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284(5423):2124–2129.
- Ahmad Y, Boisvert F-M, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database – 2008 update. Nucleic Acids Res. 2009;37(Database issue):D181–184. doi:10.1093/nar/gkn804
- Natchiar SK, Myasnikov AG, Kratzat H, Hazemann I, Klaholz BP. Visualization of chemical modifications in the human 80S ribosome structure. Nature. 2017;551(7681):472–477. doi:10.1038/nature24482
- Marcel V, Catez F, Diaz J-J. Ribosome heterogeneity in tumorigenesis: The rRNA point of view. Mol Cell Oncol. 2(3):e983755. doi:10.4161/23723556.2014.983755
- Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One. 2009;4(9):e7147. doi:10.1371/journal.pone.0007147
- Marcel V, Ghayad SE, Belin S, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–330. doi:10.1016/j.ccr.2013.08.013
- Erales J, Marchand V, Panthu B, et al. Evidence for rRNA 2’-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci U S A. 2017;114(49):12934–12939. doi:10.1073/pnas.1707674114
- Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259–262. doi:10.1126/science.1079447
- Yip WSV, Vincent NG, Baserga SJ. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea. 2013;2013:1–14. doi:10.1155/2013/614735
- Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86(5):823–834. doi:10.1016/S0092-8674(00)80156-7
- Gagnon KT, Biswas S, Zhang X, et al. Structurally conserved Nop56/58 N-terminal domain facilitates archaeal box C/D ribonucleoprotein-guided methyltransferase activity. J Biol Chem. 2012;287(23):19418–19428. doi:10.1074/jbc.M111.323253
- ALL IC-BFM 2009: A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia. Kiel, Germany, August 14, 2009.
- Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: Mechanisms of disease. Clin Med Insights Blood Disord. 2014;7:7–16. doi:10.4137/CMBD.S16952
- Girardi T, De Keersmaecker K. T-ALL: All a matter of translation? Haematologica. 2015;100(3):293–295. doi:10.3324/haematol.2014.118562
- De Keersmaecker K, Atak ZK, Li N, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45(2):186–190. doi:10.1038/ng.2508
- Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci U S A. 2014;111(15):5640–5645. doi:10.1073/pnas.1400247111
- Krastev DB, Slabicki M, Paszkowski-Rogacz M, et al. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol. 2011;13(7):809–818. doi:10.1038/ncb2264
- Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A. 2000;97(7):3260–3265. doi:10.1073/pnas.97.7.3260
- Watanabe-Susaki K, Takada H, Enomoto K, et al. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells. 2014;32(12):3099–3111. doi:10.1002/stem.1825
- Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol. 1998;140(6):1321–1329. doi:10.1083/jcb.140.6.1321
- Šašinková M, Holoubek A, Otevřelová P, Kuželová K, Brodská B. AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int J Biochem Cell Biol. 2018;103:65–73. doi:10.1016/j.biocel.2018.08.008
- Kruth KA, Fang M, Shelton DN, et al. Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood. 2017;129(22):3000–3008. doi:10.1182/blood-2017-02-766204
- Kelekar A, Thompson CB. Bcl-2-family proteins: The role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8(8):324–330. doi:10.1016/S0962-8924(98)01321-X
- Sai S, Nakagawa Y, Sakaguchi K, et al. Differential regulation of 11β-hydroxysteroid dehydrogenase-1 by dexamethasone in glucocorticoid-sensitive and -resistant childhood lymphoblastic leukemia. Leuk Res. 2009;33(12):1696–1698. doi:10.1016/j.leukres.2009.04.016