Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 1, January, p. 107–113

doi: 10.17219/acem/112608

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Analysis of the rRNA methylation complex components in pediatric B-cell precursor acute lymphoblastic leukemia: A pilot study

Marek Ussowicz1,B,C,D,E,F, Virginie Marcel2,B,D,E,F, Flora Nguyen Van Long2,B,C,E, Bernarda Kazanowska1,B,E,F, Jean-Jacques Diaz2,A,E,F, Dariusz Wołowiec3,A,E,F

1 Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Poland

2 The Université Claude Bernard Lyon 1, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, France

3 Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Poland


Background. Dysregulation of ribosome biogenesis and alteration of ribosome composition, including alteration in ribosomal RNA (rRNA) 2’-O-ribose methylation, can play a role in malignant transformation and cancer progression. Several studies recently reported that components of the rRNA methylation complex are associated with leukemogenesis. However, no study ever investigated the alteration of ribosome biogenesis factors in the most common pediatric malignancy – B-cell precursor acute lymphoblastic leukemia (BCP-ALL).
Objectives. The objective of this study was to examine the expression of factors building the rRNA methylation complex, either the protein components (1 methyl-transferase (FBL), NOP56, NOP58, NHP2L1) or some RNA components (box C/D snoRNAs: SNORD35B, SNORD65, SNORD46, SNORD50A, SNORD38B), as well as CMYC, and nucleolin (NCL) – a protein involved in rRNA synthesis. Clinical effects in children with BCP-ALL were also investigated.
Material and Methods. The factors involved in ribosome biogenesis were studied in 28 children with BCP-ALL with the use of real-time polymerase chain reaction (RT-PCR) using the BioMark HD System (Fluidigm, San Francisco, USA) in cDNA prepared from the bone marrow samples collected at diagnosis.
Results. Strong correlations were observed between NOP56, NOP58 and NCL, and multiple weaker correlations were observed in the box C/D snoRNA category, and between box C/D snoRNA and transcripts coding proteins of the rRNA methylation complex. The expression of analyzed transcripts did not correlate with the initial white blood cells count (WBC) or with bone marrow blast percentage. Ribosome biogenesis upregulation with overexpression of FBL and NOP56, and CMYC was found in patients who subsequently relapsed and the upregulation signature was not associated with known risk predictors.
Conclusion. This is the first report on the clinical aspect of ribosome biogenesis in pediatric BCP-ALL, and it shows that overexpression of CMYC and C/D box nucleoproteins FBL and NOP56 is an antecedent event in patients who subsequently relapse. The dysregulation pattern is different from the previous reports in acute myeloid leukemia (AML), suggesting that dysregulation of ribosome biogenesis is specific for BCP-ALL.

Key words

pediatric, methylation, relapse, acute lymphoblastic leukemia (ALL), ribosome

References (34)

  1. WHO Europe. Incidence of childhood leukaemia.
  2. Möricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–284. doi:10.1038/leu.2009.257
  3. Gachet S, El-Chaar T, Avran D, et al. Deletion 6q drives T-cell leukemia progression by ribosome modulation. Cancer Discov. 2018;8(12):1614–1631. doi:10.1158/2159-8290.CD-17-0831
  4. Warner WA, Spencer DH, Trissal M, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–163. doi:10.1182/bloodadvances.2017006668
  5. Marcel V, Catez F, Berger CM, et al. Expression profiling of ribosome biogenesis factors reveals nucleolin as a novel potential marker to predict outcome in AML patients. PLoS One. 2017;12(1):e0170160. doi:10.1371/journal.pone.0170160
  6. Zhou F, Liu Y, Rohde C, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19(7):844–855. doi:10.1038/ncb3563
  7. Bellodi C, McMahon M, Contreras A, et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep. 2013;3(5):1493–1502. doi:10.1016/j.celrep.2013.04.030
  8. Valleron W, Laprevotte E, Gautier E-F, et al. Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia. 2012;26(9):2052–2060. doi:10.1038/leu.2012.111
  9. Marcel V, Catez F, Diaz J-J. Ribosomes: The future of targeted therapies? Oncotarget. 2013;4(10):1554–1555. doi:10.18632/oncotarget.1511
  10. Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer. 2013;13(5):299–314. doi:10.1038/nrc3496
  11. Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284(5423):2124–2129.
  12. Ahmad Y, Boisvert F-M, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database – 2008 update. Nucleic Acids Res. 2009;37(Database issue):D181–184. doi:10.1093/nar/gkn804
  13. Natchiar SK, Myasnikov AG, Kratzat H, Hazemann I, Klaholz BP. Visualization of chemical modifications in the human 80S ribosome structure. Nature. 2017;551(7681):472–477. doi:10.1038/nature24482
  14. Marcel V, Catez F, Diaz J-J. Ribosome heterogeneity in tumorigenesis: The rRNA point of view. Mol Cell Oncol. 2(3):e983755. doi:10.4161/23723556.2014.983755
  15. Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One. 2009;4(9):e7147. doi:10.1371/journal.pone.0007147
  16. Marcel V, Ghayad SE, Belin S, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–330. doi:10.1016/j.ccr.2013.08.013
  17. Erales J, Marchand V, Panthu B, et al. Evidence for rRNA 2’-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci U S A. 2017;114(49):12934–12939. doi:10.1073/pnas.1707674114
  18. Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259–262. doi:10.1126/science.1079447
  19. Yip WSV, Vincent NG, Baserga SJ. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea. 2013;2013:1–14. doi:10.1155/2013/614735
  20. Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86(5):823–834. doi:10.1016/S0092-8674(00)80156-7
  21. Gagnon KT, Biswas S, Zhang X, et al. Structurally conserved Nop56/58 N-terminal domain facilitates archaeal box C/D ribonucleoprotein-guided methyltransferase activity. J Biol Chem. 2012;287(23):19418–19428. doi:10.1074/jbc.M111.323253
  22. ALL IC-BFM 2009: A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia. Kiel, Germany, August 14, 2009.
  23. Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: Mechanisms of disease. Clin Med Insights Blood Disord. 2014;7:7–16. doi:10.4137/CMBD.S16952
  24. Girardi T, De Keersmaecker K. T-ALL: All a matter of translation? Haematologica. 2015;100(3):293–295. doi:10.3324/haematol.2014.118562
  25. De Keersmaecker K, Atak ZK, Li N, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45(2):186–190. doi:10.1038/ng.2508
  26. Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci U S A. 2014;111(15):5640–5645. doi:10.1073/pnas.1400247111
  27. Krastev DB, Slabicki M, Paszkowski-Rogacz M, et al. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol. 2011;13(7):809–818. doi:10.1038/ncb2264
  28. Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A. 2000;97(7):3260–3265. doi:10.1073/pnas.97.7.3260
  29. Watanabe-Susaki K, Takada H, Enomoto K, et al. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells. 2014;32(12):3099–3111. doi:10.1002/stem.1825
  30. Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol. 1998;140(6):1321–1329. doi:10.1083/jcb.140.6.1321
  31. Šašinková M, Holoubek A, Otevřelová P, Kuželová K, Brodská B. AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int J Biochem Cell Biol. 2018;103:65–73. doi:10.1016/j.biocel.2018.08.008
  32. Kruth KA, Fang M, Shelton DN, et al. Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood. 2017;129(22):3000–3008. doi:10.1182/blood-2017-02-766204
  33. Kelekar A, Thompson CB. Bcl-2-family proteins: The role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8(8):324–330. doi:10.1016/S0962-8924(98)01321-X
  34. Sai S, Nakagawa Y, Sakaguchi K, et al. Differential regulation of 11β-hydroxysteroid dehydrogenase-1 by dexamethasone in glucocorticoid-sensitive and -resistant childhood lymphoblastic leukemia. Leuk Res. 2009;33(12):1696–1698. doi:10.1016/j.leukres.2009.04.016