Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 4, July-August, p. 319–322

Publication type: editorial article

Language: English

The Role of Human PIM−2 (hPIM−2) Gene Expression in Solid Tumors and Hematological Malignancies

Rola ekspresji genu hPIM−2 w nowotworach litych i hematologicznych

Katarzyna Kapelko−Słowik1,, Donata Urbaniak−Kujda1,

1 Chair and Clinic of Hematology, Neoplastic Blood Diseases, and Transplantation, Wroclaw Medical University, Poland

Abstract

Cell survival regulation plays an important role in maintaining homeostasis in response to damaging factors. Neoplastic diseases are those in which failure to maintain an intact apoptotic response is associated with progression and poor response to treatment. Apoptosis is mainly regulated through growth factors and cytokines. One protein which plays a role in apoptosis is serine/threonine kinase PIM−2. PIM−2, PIM−1, and PIM−3 kinases are encoded by the protooncogenes hPIM−1, hPIM−2, and hPIM−3. The mechanism by which PIM−2 kinase promotes cell survival and inhibits apoptosis is still under investigation. The critical moment seems to be inactivation of the pro−apoptotic protein BAD and the translation inhibitor 4E−BP1. The role of hPIM−2 in the oncogenesis of solid tumors and hematological malignances has been well documented. Over−expression of hPIM−2, at both the mRNA and protein level, was observed in human solid tumors and hematological neoplasms. Moreover, it was confirmed that inhibition of hPIM−2 expression blocked cell proliferation and increased cellular apoptosis. Studies on potential anticancer drugs which inhibit PIM−2 kinase are now being conducted.

Streszczenie

Regulacja przeżycia komórek odgrywa wiodącą rolę w utrzymaniu hemostazy w odpowiedzi na czynniki szkodliwe. Niewątpliwie w nowotworach dochodzi do uszkodzenia regulacji procesu apoptozy, co może prowadzić do niekontrolowanego wzrostu i braku odpowiedzi na leczenie przeciwnowotworowe. Apoptoza jest złożonym procesem, w którego regulacji biorą udział cytokiny i czynniki wzrostu. Jednym z białek, które odgrywają rolę w zależnej od czynników wzrostu apoptozie jest kinaza serynowo−treoninowa PIM−2. Kinazy PIM−2 oraz PIM−1 i PIM−3 są kodowane przez odpowiednie protoonkogeny: hPIM−1, hPIM−2, hPIM−3. Mechanizm, w którym PIM−2 hamuje proces apoptozy jest nadal przedmiotem badań. Krytycznym momentem wydaje się inaktywacja proapoptotycznego białka BAD oraz inhibitora translacji 4E−BP1. Rola hPIM−2 w onkogenezie niektórych guzów litych i nowotworów hematologicznych została dobrze udokumentowana. Zwiększoną ekspresję PIM−2, zarówno na poziomie mRNA, jak i białka, stwierdzono w ludzkich nowotworach narządowych i hematologicznych. Wykazano ponadto, że zahamowanie ekspresji hPIM−2 powoduje ograniczenie proliferacji i zwiększenie apoptozy komórek nowotworowych. Obecnie są prowadzone badania na temat inhibitorów kinazy PIM−2 jako potencjalnych leków przeciwnowotworowych.

Key words

hPIM−2, solid tumors, hematological malignances

Słowa kluczowe

hPIM−2, guzy lite, nowotwory hematologiczne

References (21)

  1. White E: The pims and outs of survival signaling: role for Pim−2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev 2003, 17, 1813–1815.
  2. Fox JC, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB: The serine/threonine kinase Pim−2 is transcriptionally regulated apoptotic inhibitor. Gene Dev 2003, 17, 1841–1854.
  3. Baytel D, Shalom S, Madgar I, Weissenberg R, Don J: The human Pim−2 proto−oncogene and its testicular expression. Biochem Biophys Acta 1998,1442, 274–285.
  4. Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E, Berns A: High−throughput retroviral tagging to indentify components of specific signaling pathways in cancer. Nat Genet 2002, 32, 153–159.
  5. Breuer ML, Cuypers HT, Berns A: Evidence for the involvement of pim−2, a new common proviral insertion site, in progression of lymphomas. EMBO 1989, 8, 743–748.
  6. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ, Lilly M: The PIM−2 kinase phosphorylates BAD on serine 112 and reverses BAD−induced cell death. J Biol Chem 2003 Nov 14, 278, 46, 45358–45367.
  7. Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JSC: Pim kinases phosphorylate multiple sites on Bad and promote 14−3−3 binding and dissociation from Bcl−XL. BMC Cell Biol 2006, 7, 1–14.
  8. Clemens MJ, Bushell M, Jeffrey I, Pain VM, Morley SJ: Translation initiation factor modification and the regulation of protein synthesis in apoptotic cells. Cell Death Differ 2000, 7, 603–615.
  9. Allen J, Verhoeven E, Domen J, van der Valk M, Berns A: Pim−2 transgene induces lymphoid tumors, exhibiting potent synergy with c−myc. Oncogene 1997, 15, 1133–1141.
  10. Zhang Y, Wang Z, Li X, Magnuson NS: Pim kinase dependent inhibition of c−Myc degradation. Oncogene 2008, 27, 4809–4819.
  11. Hammerman PS, Fox CJ, Brinbaum MJ, Thompson CB: Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005, 105, 11, 4477–4483.
  12. Dai H, Li R, Wheeler I, Diaz de Vivar A, Frolov A, Tahir S, Agoulnik I, Thompson T, Rowley D, Ayala G: Pim−2 upregulation: biological implications associated with disease progression and perineural invasion in prostate cancer. Prostate 2005, 65, 3, 276–286.
  13. Dai JM, Zhang SQ, Zhang W, Lin RX, Ji ZZ, Wang SQ: Antisense oligodeoxynucleotides targeting the serine/threonine kinase Pim−2 inhibited proliferation of DU−145 cells. Acta Pharmacol Sin 2005, 26, 3, 64–68.
  14. Gong J, Wang J, Ren K, Liu C, Li B, Shi Y: Serine/threonine kinase Pim−2 promotes liver tumorigenesis induction through mediating survival and preventing apoptosis of liver cell. J Surg Res 2008, 10.1016/j.jss.2008.03.033.
  15. Zhang SQ, Du QY, Ying Y, Ji ZZ, Wang SQ: Polymerase synthesis and potential interference of a small−interfering ENA targeting hPIM−2. World J Gastroenterol 2004, 10, 18, 2557–2660.
  16. Cohen AM, Grinblat B, Bessler H, Kristt D, Kremer A, Schwartz A, Halperin M, Shalom S, Merkel D, Don J: Increased expression of the hPim−2 gene in human chronic lymphocytic leukemia and non−Hodgkin lymphoma. Leuk Lymphoma 2004, 45, 5, 951–955.
  17. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A: The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias. Proc Natl Acad Sci USA 1989, 86, 8857–8861.
  18. Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn M, Duyster J, Fox CJ, Thompson CB, Cools J, Schwaller J: Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor−sensitive and kinase inhibitor−resistant forms of Fms−like tyrosine kinase 3 and BCR/ABL. Cancer Res 2006, 66, 7, 3828–3835.
  19. Kapelko−Slowik K, Urbaniak−Kujda D, Wolowiec D, Dybko J, Kuliczkowski K: The hPIM−2 expression is increased in AML and ALL patients and could be consider as an additional prognostic marker. Prepared for publication.
  20. Tong Y, Stewart KD, Thomas S, Przytulińska M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y, Lin N, Sowin TJ, Giranda VL, Penning T.D.: Isoxazolo[3.4−b]quinoline−3,4(1H,9H)−diones as unique, potent and selective inhibitors for PIM−1 and PIM−2 kinases: chemistry, biological activities, and molecular modeling. Bioorg Med Chem Lett 2008, 18, 5206–5208.
  21. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W, Kraft AS, Smith CD: Synthesis and evaluation of novel inhibitors of Pim−1 and Pim−2 protein kinases. J Med Chem 2009, 8, 52, 1, 74–86.