Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.2)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Open Access
Clockss
Download original text (EN)

Advances in Clinical and Experimental Medicine

2008, vol. 17, nr 1, January-February, p. 83–89

Publication type: review article

Language: English

The Role and Mechanism of Action of Bile Acids in the Digestive System – Bile Acids in the Gut

Rola i mechanizm działania kwasów żółciowych w obrębie przewodu pokarmowego – kwasy żółciowe w jelicie

Krzysztof Romański1,

1 Department of Animal Physiology, Veterinary School, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Abstract

In the small bowel, the principal role of bile acids is emulsification, and thus facilitation of the absorption of lipids as well as lipid−soluble vitamins. However, the physiological importance of this function is limited, since about 60–70% of the normal amount of lipids present in the intestinal content can be absorbed without the participation of bile acid. Bile acids affect intestinal epithelial cells, mucosal nerve endings, and enzyme activity in the intestinal lumen due to their detergent properties. This can cause alterations in gut hormone release, especially of motilin and cholecystokinin. Consequently, bile acids influence pancreatic and gastric secretion as well as gastrointestinal and gallbladder motility. Recent studies indicate that bile acids can act through muscarinic and nuclear cell receptors. Thus it can be stated that bile acids exert multidirectional effects in the digestive system and are of interest not only to biochemists and physiologists, but also to clinicians.

Streszczenie

W jelicie cienkim podstawową rolą kwasów żółciowych jest emulgacja i tym samym ułatwianie wchłaniania tłuszczów, a także witamin rozpuszczalnych w tłuszczach. Fizjologiczne znaczenie tej funkcji jest jednak ograniczone, gdyż około 60–70% prawidłowej zawartości tłuszczów znajdujących się w treści jelita może być wchłaniane bez udziału kwasów żółciowych. Detergentowe właściwości kwasów żółciowych powodują, że wpływają także na komórki nabłonka jelitowego, na zakończenia nerwowe błony śluzowej i aktywność enzymów w świetle jelita. Może to powodować zmiany w uwalnianiu hormonów jelitowych, a zwłaszcza motyliny i cholecystokininy. Skutkiem tych działań jest wpływ kwasów żółciowych na wydzielanie trzustkowe i żołądkowe oraz motorykę przewodu pokarmowego i pęcherzyka żółciowego. Nowsze badania wskazują, że kwasy żółciowe wpływają na receptory muskarynowe i receptory jądra komórkowego. Można więc stwierdzić, że kwasy żółciowe wywierają wielokierunkowe oddziaływania w układzie pokarmowym i są przedmiotem zainteresowania nie tylko biochemików i fizjologów, lecz także klinicystów.

Key words

bile acids, intestine, secretion, absorption, motility

Słowa kluczowe

kwasy żółciowe, jelito, wydzielanie, wchłanianie, motoryka

References (41)

  1. Borgström B, Barrowman JA, Lindström M: Roles of bile acids in intestinal lipid digestion and absorption. In: Sterols and Bile Acids. Danielsson H, Sjövall J (eds.). Elsevier Science Publishers, Amsterdam 1985, pp. 405–425.
  2. Cabral DJ, Small DM: Physical chemistry of bile. In: Handbook of Physiology. Section 6. The Gastrointestinal System. Vol. III. Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion. Section Editor: Schultz SG, Am Physiol Soc, Bethesda MD, 1989, pp. 621–662.
  3. Sama C, Larusso NF: Effect of primary and secondary bile acid administration on intestinal absorption of cholesterol in man. In: Bile Acids and Lipids. Eds.: Paumgartner G, Steihl A, Gerok W. MTP Press Ltd, Lancaster 1981, pp. 143–144.
  4. Krag E: Model for the effect of dihydroxy bile acids on transepithelial sodium and chloride transport. In: Biological Effects of Bile Acids. Eds.: Paumgartner G, Stiehl A, Gerok W. MTP Press Ltd, Lancaster 1979, pp. 225–231.
  5. KramerW, Wess G, Bickel M, Falk E, Neckermann G, Schubert G, Urmann M: Peptide delivery by coupling to bile acids. In: Bile Acids – Cholestasis – Gallstones. Advances in Basic and Clinical Bile Acid Research. Eds.: Fromm H, Leuschner U. Kluwer Academic Publishers, Dordrecht 1996, pp. 60–77.
  6. Caspary WF, Meyne K: Comparative effects of ursoand chenodeoxycholic acid on colonic and small intestinal function in rats. In: Biological Effects of Bile Acids. Eds.: Paumgartner G, Stiehl A, Gerok W. MTP Press Ltd, Lancaster 1979, pp. 233–240.
  7. Sanyal AJ, Moore EW: Premicellar bile salts enhance intestinal calcium absorption. In: Bile Acids in Gastroenterology. Basic and Clinical Advances. Eds.: Hofmann AF, Paumgartner G, Stiehl A. Kluwer Academic Publishers, Dordrecht 1995, pp. 270–280.
  8. Hofmann AF, Hagey LR: Bile acids and intestinal bacteria: peaceful coexistence versus deadly warfare. In: Gut and the Liver. Eds.: Blum HE, Bode C, Bode JC, Santor RB. Kluwer Academic Publisher, Dordrecht 1998, pp. 85–103.
  9. Keane FB, DiMagno EP, Dozois RR, Go VLW: Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide, and motilin. Gastroenterology 1980, 78, 310–316.
  10. Nilsson I, Svenberg T, Wallin, B, Hedenborg G, Hellström PM: Activity fronts of migrating myoelectric complex: initiation by luminal bile acids in rat small intestine. J Gastrointest Motil 1991, 3, 84–91.
  11. Van Ooteghem NA, Van Erpecum KJ, Van Berge−Henegouwen GP: Effects of ileal bile salts on fasting small intestinal and gallbladder motility. Neurogastroenterol Motil 2002, 14, 527–533.
  12. Van Ooteghem NA, Moschetta A, Rehfeld JF, Samsom M, Van Erpecum KJ, Van Berge−Henegouwen GP: Intraduodenal conjugated bile salts exert negative feedback control on gall bladder emptying in the fasting state without affecting cholecystokinin release or antroduodenal motility. Gut 2002, 50, 669–674.
  13. Davies HA, Wheeler MH, Psaila J, Rhodes J, Newcombe RG, Jones JM, Biol LI, Procter D, Adrian TE, Bloom SR: Bile exclusion from the duodenum. Its effect on gastric and pancreatic function in the dog. Dig Dis Sci 1985, 30, 954–960.
  14. Kvietys PR, McLendon JM, Granger DN: Postprandial intestinal hyperemia: role of bile salts in the ileum. Am J Physiol 1981, 241, G469–G477.
  15. Kotake H, Itoh T, Watanabe M, Hisatome I, Hasegawa J, Mashiba H: Effect of bile acid on electrophysiological properties of rabbit sino−atrial node in vitro. Br J Pharmacol 1989, 98, 357–360.
  16. Neubrand MW, Dominguez−Munoz JE, Reichel C, Kampmann S, Eschmann K, von Falkenhausen M, Bregulla M, Malfertheiner P, Sauerbruch T: Effect of intraduodenal administration of ursodeoxycholic acid on interdigestive interaction between gallbladder motility, pancreatic secretion and endocrine activity. Digestion 2004, 69, 149–157.
  17. Hartmann W, Hotz J, Ormai S, Aufgebauer J, Schneider F, Goebell H: Stimulation of bile and pancreatic secretion by duodenal perfusion with Na−taurocholate in the cat compared with jejunal and ileal perfusion. Scand J Gastroenterol 1980, 15, 433–442.
  18. Jin JG, Nakayama S: Bile salt potentiates the action of capsaicin on sensory neurones of guinea−pig ileum. Neurosci Lett 1990, 109, 88–91.
  19. Karlstrom L: Mechanisms in bile salt−induced secretion in the small intestine. An experimental study in rats and cats. Acta Physiol Scand 1986, 549, suppl, 1–48.
  20. Raufman J−P, Cheng K, Zimniak P: Activation of muscarinic receptor signaling by bile acids. Dig Dis Sci 2003, 48, 1431–1444.
  21. Riepl RL, Lehnert P: The mediators of bile action on the exocrine pancreas. Scand J Gastroenterol 1993, 28, 369–374.
  22. Youssef SA, Ramadan A, Afifi NA, Aziz MD: Influence of sodium taurocholate on the potency and duration of action of some neuromuscular blocking agents. Dtsch Tierarztl Wochenschr 1991, 98, 213–216.
  23. Keene CD, Rodriques CM, Eich T, Chhabra MS, Steer CJ, Low WC: Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci USA 2002, 99, 10671–10676.
  24. Bondesen S, Christensen H, Lindorff−Larsen K, Schaffalitzky de Muckadell OB: Plasma secretin in response to pure bile salts and endogenous bile in man. Dig Dis Sci 1985, 30, 440–444.
  25. Nilsson I, Svenberg T, Hellström PM, Theodorsson E, Hedenborg G, Modlin IM: Pancreatobiliary juice releases motilin during phase I of the migrating motor complex in man. Scand J Gastroenterol 1993, 28, 80–84.
  26. Romański KW, Peeters TL, Vantrappen G: Are enterohepatic cirulation and interdigestive motility related through motilin and PP secretion? Gastroenterology 1985, 88, 1558 (abstract).
  27. Gomez G, Lluis F, Guo Y−S, Greeley GH, Townsend CM, Thompson JC: Bile inhibits release of cholecystokinin and neurotensin. Surgery 1986, 100, 363–367.
  28. Ohta H, Guan D, Tawil T, Liddle RA, Green GM: Regulation of plasma cholecystokinin levels by bile and bile acids in the rat. Gastroenterology 1990, 99, 819–825.
  29. Chayvialle J−A, Miyata M, Rayford PL, Thompson JC: Effects of test meal, intragastric nutrients and intraduodenal bile on plasma concentrations of immunoreactive somatostatin and vasoactive intestinal peptide in dogs. Gastroenterology 1980, 79, 844–852.
  30. Levine JS, Coonan JE, Kern F: Effect of antral instillation of bile salts on fasting serum gastrin levels. Dig Dis Sci 1980, 25, 449–452.
  31. Namba M, Matsuyama T, Nonaka K, Tarui S: Effect of intraluminal bile or bile acids on release of gut glucagon−like immunoreactive materials in the dog. Horm Metab Res 1983, 15, 82–84.
  32. Hofmann AF: The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999, 159, 2647–2658.
  33. Veysey MJ, Thomas LA, Mallet AI, Jenkins PJ, Besser GM, Murphy GM, Dowling RH: Colonic transit influences deoxycholic acid kinetics. Gastroenterology 2001, 121, 812–822.
  34. Binder HJ, Filburn B, Floch M: Bile acid inhibition of intestinal anaerobic organisms. Am J Clin Nutr 1975, 28, 119–125.
  35. Sun Y, Fihn BM, Sjovall H, Jodal M: Enteric neurones modulate the colonic permeability response to luminal bile acids in rat colon in vivo. Gut 2004, 53, 362–367.
  36. Barcelo A, Claustre J, Toumi F, Burlet G, Chayvialle J−A, Cuber J−C, Plaisancié P: Effect of bile salts on colonic mucus secretion in isolated vascularly perfused rat colon. Dig Dis Sci 2001, 46, 1223–1231.
  37. Flynn M, Darby C, Hyland J, Hammond P, Taylor I: The effect of bile acids on colonic myoelectrical activity. Br J Surg 1979, 66, 776–779.
  38. Snape WJ Jr, Shiff S, Cohen S: Effect of deoxycholic acid on colonic motility in the rabbit. Am J Physiol 1980, 238, G321–G325.
  39. Edwards CA, Brown S, Baxter AJ, Bannister JJ, Read NW: Effect of bile acid on anorectal function in man. Gut 1989, 383–386.
  40. Flynn M, Hammond P, Darby C, Taylor I: Effects of bile acids on human colonic motor function in vitro. Digestion 1982, 23, 211–216.
  41. Marcus SN, Heaton KW: Intestinal transit, deoxycholic acid and the cholesterol saturation of bile – three interrelated factors. Gut 1986, 27, 550–558.