Advances in Clinical and Experimental Medicine
2008, vol. 17, nr 1, January-February, p. 15–26
Publication type: original article
Language: English
The Influence of Quercetin on Fatty−Acid Content in Selected Organs of Rats on Diets with Fresh and Oxidized Fat
Wpływ kwercetyny na skład kwasów tłuszczowych w wybranych narządach szczurów doświadczalnych na diecie z tłuszczem świeżym i utlenionym
1 Department of Food Science and Nutrition, Silesian Piasts University of Medicine in Wrocław, Poland
Abstract
Background. The kind and quality of dietary fat may condition the biological activity of quercetin, which is manifested by its influence on the activity of n−3, n−6, and n−9 metabolic pathway enzymes.
Objectives. Evaluation of the effect of quercetin on fatty−acid content in the plasma and selected organs of experimental rats in a condition of oxidative stress due to oxidized dietary fats.
Material and Methods. Using rats fed a diet with an 8% fat content and a 0.05% cholesterol supplement, the influence of quercetin on the content of fatty acids in the plasma, liver, kidneys, heart, and lung was assessed. Fatty extracts from the biological material were obtained by means of the Folch method. The composition of fatty acids (as the percentage of the total level of acids) in the form of methyl esters was determined by gas chromatography using a 100−m glass capillary column. The source of pro−oxidants in the rats’ diet was either oxidized sunflower oil or oxidized lard. The four−week experiment involved 80 male Buffalo rats, of which 40 received 0.075% quercetin as a dietary supplement.
Results. Quercetin affected the fatty−acid content in the investigated organs in the animals fed vegetable fat. The degree of changes depended on the quality of the fat. Fat statistically significantly changed the content of C16, C18, C18 = 2, C20 = 2, C22 = 6, and C20 = 4 fatty acids in the liver and plasma and C18 = 1 n−9 in the kidneys. The content of C18 = 2 was higher by a factor of 3.2 in the liver, 2.8 in the kidneys, plasma, and lungs, and 1.6 in the heart of rats fed on fresh oil and quercetin. A diet with oxidized oil and quercetin resulted in increases in C18 = 2 of 1.7−fold in the plasma, 1.6−fold in the liver, 1.5−fold in the lungs, 1.4−fold in the kidneys, and 1.2−fold in the heart compared with the control group. Preference of the n−9 pathway of fatty−acid synthesis was observed.
Conclusion. Quercetin affected the metabolism of fatty acids in the organism when the dietary fat was rich in polyunsaturated fatty acids. Probably polyunsaturated fatty acids, with they become components of the cell membranes, enable quercetin to pass inside the cells of tissues and to exert the biogenic effect.
Streszczenie
Wprowadzenie. Rodzaj i jakość tłuszczu w diecie mogą warunkować aktywność biologiczną kwercetyny, przejawiającą się jej wpływem na aktywność enzymów szlaków metabolicznych n−3, n−6, n−9.
Cel pracy. Ocena wpływu kwercetyny na skład kwasów tłuszczowych w osoczu i wybranych narządach szczurów doświadczalnych w warunkach stresu oksydacyjnego wywołanego utlenionymi tłuszczami pokarmowymi.
Materiał i metody. Podawano szczurom diety z 8% zawartością tłuszczu oraz 0,5% dodatkiem cholesterolu i oceniano wpływ kwercetyny na skład kwasów tłuszczowych w osoczu, wątrobie, nerkach, sercu i płucach. Ekstrakty tłuszczowe z materiału biologicznego otrzymano metodą Folcha. Skład kwasów tłuszczowych (jako% sumy kwasów) w postaci estrów metylowych oznaczono metodą chromatografii gazowej z zastosowaniem kolumny kapilarnej szklanej o długości 100 m. Źródłem prooksydantów w diecie szczurów były utlenione: olej słonecznikowy i smalec. Czterotygodniowe doświadczenie żywieniowe przeprowadzono z udziałem 80 szczurów, samców, rasy Buffalo, których 40 otrzymywało 0.075% dodatek kwercetyny jako suplement diety.
Wyniki. Kwercetyna wpływała na skład kwasów tłuszczowych w wybranych narządach w grupach zwierząt karmionych tłuszczem roślinnym, a wielkość zmian zależała od jego jakości. W istotny statystycznie sposób zmieniał się skład następujących kwasów tłuszczowych: C16, C18, C18 = 2, C20 = 2, C22 = 6, w wątrobie i osoczu także C20 = 4, a w nerkach C18 = 1 n−9. Udział C18 = 2 zwiększył się 3,2 raza w wątrobach, 2,8 raza w nerkach, osoczu i płucach oraz 1,6 raza w sercach szczurów karmionych olejem świeżym i kwercetyną. Na diecie z olejem utlenionym i kwercetyną skład C18 = 2 zwiększył się 1,7 raza w osoczu, 1,6 raza w wątrobach, 1,5 raza w płucach, 1,4 raza w nerkach i 1,2 raza w sercach w stosunku do grupy kontrolnej. Obserwowano preferencję syntezy kwasów szlaku n−9.
Wnioski. Kwercetyna wpływała na metabolizm kwasów tłuszczowych w organizmie wtedy, gdy był spożywany tłuszcz bogaty w wielonienasycone kwasy tłuszczowe. WKT, stając się składnikiem błon komórkowych, umożliwiają kwercetynie wniknięcie do wnętrza komórek tkanek i biogenne działanie.
Key words
fatty acids, oxidized fats, quercetin, rats, liver
Słowa kluczowe
kwasy tłuszczowe, utlenione tłuszcze, kwercetyna, szczury, wątroba
References (37)
- Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects and safety. Ann Rev Nutr 2002, 22, 19–34.
- Aherne SA, O’Brien NM: Dietary flavonols: chemistry, food content and metabolism. Nutrition 2002, 18, 75–81.
- Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N: Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000, 130, 2243–2250.
- Geleijnse JM, Launer LJ, Hofman A, Pols HAP, Witteman JCM: Tea flavonoids may protect against atherosclerosis: The Rotterdam study. Arch Intern Med 1999, 159, 2170–2174.
- De Vries JHM, Janssen K, Hollman PCH, Van Staveren WA, Katan MB: Consumption of quercetin and kaempferol in free living subject eating a variety of diets. Cancer Lett 1997, 114, 141–144.
- Erlund I: Review of flavonoids quercetin, hesperetin,and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004, 24, 851–874.
- Nuutila AM, Puupponen−Prima R, Aarni M, Oksman−Caldentey KY: Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 2003, 81, 485–493.
- Peres W, Tunon MJ, Collado PSHerrmann S, Marroni N, Gonzalez−Gallego J: The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction. J Hepatol 2000, 33, 742–750.
- Pavanato A, Tunon MJ, Sanchez−Campos S, Marroni CA, Llesuy S, GonzalezGallego J, Marroni N: Effects of quercetin on liver damage in rats with carbon tetrachloride−induced cirrhosis. Dig Dis Sci 2003, 48, 824–829.
- Cipak L, Novotny L, Cipakova I, Rauko P: Differential modulation of cisplatin and doxorubicin efficacies in leukemia cells by flavonoids. Nutr Res 2003, 23, 1045–1057.
- Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN: Intake of flavonoids and lung cancer. J Natl Cancer Inst 2000, 92, 154–160.
- Czeczot H: Biological activities of flavonoids – a review. Pol J Food Nutr Sci 2000, 9, 3–13.
- Formica JV, Regelson W: Review of the biology of quercetin and related bioflavonoids. Fd Chem Toxic 1995, 33, 1061–1080.
- Peterson J, Dwyer J: Flavonoids: dietary occurrence and bichemical activity. Nutr Res 1998, 18, 1995–2018.
- Di Carlo J, Mascolo N, Izzo AA, Capasso F: Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 1999, 65, 337–353.
- Murota K, Terao J: Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 2003, 417, 12–17.
- Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S: Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG−63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 2004, 67, 1307–1313.
- Harborne JB, Williams CA: Advances in flavonoid research since 1992. Phytochemistry 1992, 55, 481–504.
- Fusi F, Saponara S, Pessina F, Gorelli B, Sgaragli G: Effects of quercetin and rutin on vascular preparations. Eur J Nutr 2003, 42, 10–17.
- Lahouel M, Boulkour S, Segueni N, Fillastre JP: Protective effect of flavonoides against the toxicity of vinblastine, cyclophosphamide and paracetamol by inhibition of lipid peroxydation and increase of liver glutathion. Haematology 2004, 7, 59–67.
- Parrish ChC, Myher JJ, Kuksis A, Angel A: Lipid structure of rat adipocyte plasma membranes following dietary lard and fish oil. Biochim Biophys Acta 1997, 1323, 253–262.
- Barzanti V, Pregnolato P, Maranesi M, Bosi I, Baracca A, Solaini G, Turchetto E: Effect of dietary oils containing graded amounts of 18:3 n−6 and 18:4 n−3 on cell plasma membranes. J Nutr Biochem 1995, 6, 21–26.
- Yilmaz N, Demirbas A, Sahin A: Changes in membrane fatty acid composition of human erythrocytes obtained from dietary margarine users and non−users. Food Chemistry 2000, 70, 371−375.
- Reeves PG, Nielsen FH, Fahey GC: Ain−93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing Committee on the Reformulation of the Ain−76A rodent diet. J Nutr 1993, 123, 1939–1951.
- Ziemlański S, Panczenko−Kresowska B, Budzyńska−Topolewska J, Żelazkiewicz K, Kołakowska A: Effect of variously oxidized marine fish fat on guinea pig organism. Acta Aliment Pol 1992, 17/31, 159–169.
- Folch J, Lees M, Sloane−Stanley GH: Asimple method for the isolation, and purification of total lipids from animal tissues. J Biol Chem 1957, 226, 497–509.
- Andrikopoulos NK. Antonopoulou S, Kaliora AC: Oleuropein inhibits LDL oxidation induced by cooking oil frying by−products and platelet aggregation induced by platelet−activating factor. Lebensm−Wiss u−Technol 2002, 35, 479–484.
- Daniewski M, Pawlicka M, Filipek A, Jacórzyński B, Mielniczuk E, Balas J, Domina P: Assessment of quality control tests for frying fat of french fries. Pol J Hum Nutr Metab 2001, 28,132–139.
- Luostarinen RL, Laasonen K, Calder PC: α−tocopherol concentrations, lipid peroxidation and superoxide dismutase and glutathione peroxidase activities in rat heart and liver after feeding stabilized and unstabilized fish oil. Nutr Res 2001, 21, 1529–1544.
- Pamplona R, Portero−Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G: Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 1998, 39, 1989–1994.
- Hwang D: Fatty acids and immune responses – a new perspective in searching for clues to mechanism. Annu Rev Nutr 2000, 20, 431–456.
- Chu FLE, Lund ED, Harvey E, Adlof R: Arachidonic acid synthetic pathways of the oyster protozoan parasite, Perkinsus marinus: evidence for usage of a delta−8 pathway. Mol Biochem Parasitol 2004, 133, 45–51.
- Fremont L, Gozzelino MT, Franchi MP, Linard A: Dietary flavonoids reduce lipid peroxidation in rats fed polyunsaturated or monounsaturated fat diets. J Nutr 1998, 128, 1495–1502.
- Gaiva MHG, Couto RC, Oyama LM, Couto GEC, Silveira VLF, Riberio EB, Nascimento CMO: Polyunsaturated fatty acid−rich diets: effect on adipose tissue metabolism in rats. Br J Nutr 2001, 86, 371–377.
- Yaqoob P, Sherrington EJ, Jeffery NM, Sanderson P, Harvey DJ, Newsholme EA, Calder PC: Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat, Int. J. Biochem. Cell Biol 1995, 27, 297–310.
- Lopez−Varela S, Sanchez−Muniz FJ, Cuesta C: Decreased food efficiency ratio, growth retardation and changes in liver fatty acid composition in rats consuming thermally oxidized and polymerized sunflower oil used for frying. Fd Chem Toxic 1995, 33, 181–189.
- Ammouche A, Rouaki F, Bitam A, Bellal MM: Effect of ingestion of thermally oxidized sunflower oil on the fatty acid composition and antioxidant enzymes of rat liver and brain in development. Ann Nutr Metab 2002, 46, 268–275.