Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.3)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 6, November-December, p. 1121–1127

Publication type: review article

Language: English

Laboratory Diagnostics of Alzheimer’s Disease

Diagnostyka laboratoryjna choroby Alzheimera

Wanda Dobryszycka1,, Jerzy Leszek2,

1 Chair and Department of Pharmacological Biochemistry, Silesian Piasts University of Medicine,Wrocław, Poland

2 Chair and Department of Psychiatry, Silesian Piasts University of Medicine, Wrocław, Poland

Abstract

Features of an ideal biomarker in laboratory diagnostics of Alzheimer’s disease (AD), are given. Contemporary molecular imaging probes as magnetic resonance, photon emission tomography (SPECT), positron emission tomography (PET) and computer perfusion tomography (pCT), are shown. Among biomarkers, determined mainly in the cerebrospinal fluid relatively the highest significance in AD diagnosis reveal amyloid peptides Aβ1−42, especially in combination with tau protein total and hiperfosforylated. In spite of new proteomic laboratory nanotechnologies, there is lack of an appropriate relationships between neurobiology and clinical phenotypes of AD as well as conceptual model of complex connection between biochemical/molecular changes and the clinical symptoms of the disease.

Streszczenie

Przedstawiono cechy idealnego biomarkera w diagnostyce laboratoryjnej choroby Alzheimera. Wskazano na zastosowanie współczesnych technik neuroobrazowania: jądrowego rezonansu magnetycznego, fotonowej tomografii emisyjnej, pozytronowej tomografii emisyjnej i komputerowej tomografii perfuzyjnej. Wśród biomarkerów oznaczanych głównie w płynie mózgowo−rdzeniowym, największe znaczenie w diagnostyce mają peptydy amyloidowe Aβ1−42, zwłaszcza w kombinacji z białkiem tau całkowitym lub hiperfosforylowanym. Mimo nowych proteomicznych nanotechnologii laboratoryjnych, nadal brakuje właściwego modelu powiązania neurobiologii klinicznej z fenotypami choroby Alzheimera oraz współzależności zmian biochemicznych/molekularnych z objawami klinicznymi.

Key words

Alzheimer’s disease, cerebrospinal fluid, neuroimaging, peptides Aβ1−42, protein tau, nanotechnologies

Słowa kluczowe

choroba Alzheimera, płyn mózgowo−rdzeniowy, neuroobrazowanie, peptydy Aβ1−42, białko tau, nanotechnologie

References (30)

  1. Kril JJ: Alzheimer’s disease: its diagnosis and pathogenesis. Intern Rev Neurobiol 2001, 48, 167–217.
  2. Verhey FRJ: Old and forgotten: Alzheimer’s lessons. Arch Gerontol Geriatr 2004, Suppl. 9, 455–464.
  3. Dobryszycka W: Metaboliczne podstawy choroby Alzheimera. W: Demencje Wieku podeszłego. Wyd Continuo, Wrocław 2004, 9–66.
  4. Dobryszycka W, Leszek J: Rola metali w patomechanizmie choroby Alzheimera (miedź, cynk, żelazo). Psychoger Pol 2005, 2, 117–124.
  5. Bilikiewicz A: Aktualna sytuacja psychogeriatrii w Polsce. Psychoger Pol 2004, 1, 1–5.
  6. Khachaturian ZS: The challenges of developing and validating molecular and biochemical markers of Alzheimer’s disease. Neurobiol Aging 2002, 23, 509–511.
  7. Zimny A, Sąsiadek M, Leszek J, Czarnecka A, Trypka E, Kiejna A: Does perfusion CT enable differentiating Alzheimer’s disease from vascular dementia and mixed dementia? – preliminary report. J Neurol Sci 2006 (in press).
  8. Taylor WD, MacFall JR, Payne ME, McQuoid DR, Steffens DC, Provenzale JM, Krishnan RR: Greater MRI lesion volumes in elderly depressed subjects than in control subjects. Psychiatry Res−Neuroimag 2005, 139, 1–7.
  9. Sun SW, Song NK, Harms MP, Lin SJ, Holtzman DM, Merchant KM, Kotyk JJ: Detection of age−dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 2005, 191, 77–85.
  10. Foster NL:Validating FDG−PET as a biomarker for frontotemporal dementia. Exp Neurol 2003, 184, S2–S3.
  11. Agdeppa ED, Kepe V, Liu J, Flores−Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang S−C, Barrio JR: Binding characteristics of radiofluorinated 6−dialkylamino−2−naphtylethylidene derivatives as positron emission tomography imaging probes for β−amyloid plaques in Alzheimer’s disease. J Neurosci 2001, 21: RC189 (1–5).
  12. Zhuang Z−P, Kung M−P, Hou C, Plossl K, Skovronsky D, Gur TL, Trojanowski JQ, Lee VM−Y, Kung HF: IBOX(2−{4’−dimethyaminophenyl}−6−iodobenzoxazole): a ligand for imaging amyloid plaques in the brain. Nucl Med Biol 2001, 28, 887–894.
  13. Antuono PG, Jones JL, Wang Y, Li S−J: Decreased glutamate plus glutamine in Alzheimer’s disease detected in vivo with 1H−MRS at 0.5 T. Neurol 2001, 56, 737–742.
  14. Encinas M, de Juan R, Marcos A, Gil P, Barabash A, Fernandez C, de Ugarte C, Cabranez JA: Regional cerebral blood flow assessed with 99mTc−ECD SPECT as a marker of progression of mild cognitive impairment to Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2003, 30, 1473–1480.
  15. Okamura N, Arai H, Maruyama M, Higuchi M, Matsui T, Tanji H, Seki T, Hirai H, Chiba H, Itoh M, Sasaki H: Combined analysis of CSF tau levels and [123I] iodoamphetamine SPECT in mild cognitive impairment: implication for a novel predictor of Alzheimer’s disease. Am J Psychiatry 2002, 159, 474–476.
  16. Wang WS, Zhang JM, Lin BL: QSAR study of 1−125−labeled 2−(4−aminophenyl)benzotiazole derivatives as imaging agents for β−amyloid in the brain with Alzheimer’s diserase. J Radioanal Nucl Chem 2005, 266, 107–111.
  17. Ganzer S, Arlt S, Schoder V, Buhmann C, Mandelkow E−M, Finckh U, Beisigiel U, Naber D, Muller−Thompsen T: CSF−tau, CSF−Aβ1−42, ApoE genotype and clinical parameters in the diagnosis of Alzheimer’s disease: combination of CSF−tau and MMSE yields highest sensitivity and specificity. J Neural Transm 2003, 110, 1149–1160.
  18. Andreasen N, Vanmechelen E, Vanderstichele H, Davidsson P, Blennow K: Cerebrospinal fluid levels of total−tau, phospho−tau and Aβ42 predicts development of Alzheimer’s disease in patients with mild cognitive impairment. Acta Neurol Scand 2003, 107, 47–51.
  19. Sjogren M, Andreasen N, Blennow K: Advances in the detection of Alzheimer’s disease – use of cerebrospinal fluid biomarkers. Clin Chim Acta 2003, 332, 1–10.
  20. Sobów T, Flirski M, Liberski PP: Amyloid−beta and tau proteins as biochemical markers of Alzheimer’s disease. Acta Neurobiol Exp 2004, 64, 53–70.
  21. Blasko I, Lederer W, Oberbauer H, Walch T, Kemmler G, Hinterhuber H, Marksteiner J, Humpel C: Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dementia Geriatr Cognit Disord 2005, 24.
  22. Teunissen CE, de Vente J, Steinbusch HWM, De Brutjn C: Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002, 23, 485–508.
  23. Lovell MA, Markesbery WR: Ratio of 8−hydroksyguanine in intact DNA to free 8−hydroksyguanine in cerebrospinal fluid from patients with Alzheimer’s disease ventricular cerebrospinal fluid. Arch Neurol 2001, 58, 392–396.
  24. Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer G, Munch G: Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J Neurochem 2004, 10, 1471–4159.
  25. Puchades M, Folkesson Hansson M, Nilsson CLAndreasen N, Blennow K, Davidsson P: Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Molec Brain Res 2003, 118, 140–146.
  26. Staniszewska M, Leszek J, Małyszczak K, Gamian A: Are advanced glycation end−products specific biomarkers for Alzheimer’s disease? Int J Geriatr Psychiatry 2005, 20, 896–897.
  27. Miller BB, Mandell JW: Multiplex method for measuring biomarkers of Alzheimer disease. Clin Chem 2005, 51, 289–290.
  28. Marcotte ER, Srivastava LK, Quirion R: cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer’s disease. Pharmacol Therapeut 2003, 100, 63–74.
  29. Davidsson P, Sjogren M, Andreasen N, Lindbjer M, Nilsson CL, Westman−Brinkmalm A, Blennow K: Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Res Mol Brain Res 2002 109, 128–133.
  30. Keating CD: Nanoscience enables ultrasensitive detection of Alzheimer’s biomarker. PNAS 2005, 102, 2263–2264.