Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.6)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (PL)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 3, May-June, p. 497–503

Publication type: review article

Language: Polish

Komórki niezróżnicowane – źródła i plastyczność

Stem Cells – Sources and Plasticity

Dorota M. Olszewska−Słonina1,, Jan Styczyński2,, Tomasz A. Drewa1,, Rafał Czajkowski1,

1 Katedra Biologii Medycznej UMK w Toruniu, CM w Bydgoszczy

2 Katedra i Klinika Pediatrii, Hematologii i Onkologii UMK w Toruniu, CM w Bydgoszczy

Streszczenie

Komórki pnia zostały zidentyfikowane na przełomie lat 40. i 50. XX w. podczas badania skutków, jakie wywiera promieniowanie jonizujące na zwierzęta. Komórki macierzyste są niezróżnicowane, charakteryzują się różną zdolnością do samoodtwarzalności, proliferacji i różnicowania. Zdając sobie sprawę z właściwości biologicznych komórek macierzystych, rozważa się możliwość stosowania terapii komórkowej, zwanej regeneracyjną. Stwierdzono, że komórki macierzyste mogłyby być podstawą leczenia regeneracyjnego, które odegrałoby olbrzymią rolę w chorobie Parkinsona, cukrzycy, niektórych zaburzeniach neurologicznych z chorobami demielinizacyjnymi, takimi jak: stwardnienie rozsiane, choroba Alzheimera i leukodystrofie włącznie, oraz w regeneracji uszkodzonego mięśnia sercowego. Doświadczenia zdobyte w dziedzinie biologii komórek macierzystych zapowiadają również rozwój terapii białkowej i molekularnej wykorzystującej białka i małe cząstki w celu pobudzenia własnych komórek macierzystych do naprawy i odnowy.

Abstract

Stem cells were identified in forties and fifties of XX century during the studies on influence of ionizing radiation on animals. They are characterized by self−renewal potential, and ability to proliferate and differentiate. Due to biological properties of stem cells, the possibility of regenerative cell therapy is considered. Stem cells culture is a promising and pragmatic approach for repairing the damaged tissues and organs. The availability of human stem cells provide exciting possibilities for the treatment of many human diseases including Parkinson disease, diabetes mellitus, damaged heart muscle, neurological disorders involving demyelination such as multiple sclerosis, Alzheimer’s disease and leukodystrophies. Experience on biology of stem cells announce progress of the protein and molecular therapy which take advantage of proteins and small particles in the aim to induce host stem cells reparation and regeneration.

Słowa kluczowe

embrionalne komórki pnia, hodowla tkankowa, różnicowanie, medycyna regeneracyjna

Key words

embryonic stem cells, tissue culture, differentiation, regenerative medicine

References (48)

  1. Mish FC: Webster’s Ninth New Collegiate Dictionary. Merriam−Webster. Springfield 1986, 1246.
  2. Mintz B, Illmensee K: Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 1975, 72, 3585–3589.
  3. Illmensee K, Mintz B: Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci U S A 1976, 73, 549–553.
  4. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE: Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005, 167, 663–671.
  5. Menasche P: The potential of embryonic stem cells to treat heart disease. Curr Opin Mol Ther 2005, 7, 293–299.
  6. Thomson A, Itskovitz−Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147.
  7. Scholer H: Octamania: the POU factors in murine development. Trends Genet 1991, 7, 323–329.
  8. Scholer H, Ruppert S, Suzuki N, Chowdhury K, Gruss P: New type of POU domain in germ line−specific protein Oct4. Nature 1990, 344, 435–439.
  9. Pesce M, Scholer H: Oct4: gatekeeper in the beginnings of mammalian development. Stem Cells 2001, 19, 271–278.
  10. Scholer H, Dressler G, Balling R, Rohdewohld H, Gruss P: Oct4: a germline – specific transcription factor mapping to the mouse t−complex. EMBO J 1990, 9, 2185–2195.
  11. Pesce M, Scholer H: Oct4: control of totipotency and germline determination. Mol Rep Dev 2000, 55, 452–457.
  12. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe−Nebenius D, Chambers I, Scholer H, Smith A: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95, 379–391.
  13. Pan GJ, Chang ZY, Scholer HR, Pei D: Stem cell pluripotency and transcription factor Oct4. Cell Res 2002, 12(5–6), 321–329.
  14. Niwa H, Miyazaki J, Smith A: Quantitative expression of Oct−3/4 defines differentiation, dedifferentiation or self−renewal of ES cells. Nat Genet 2000, 24, 372–376.
  15. Anderson DJ: Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 2001, 30(1), 19–35.
  16. Svendsen CN, Rosser AE: Neurones from stem cells? Trends Neurosci 1995, 18(11), 465–467.
  17. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD: Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 1998, 95(23), 13726–13731.
  18. Verfaillie CM, Pera MF, Lansdorp PM: Stem cells: hype and reality. Hematology (Am Soc Hematol Educ Program) 2002, 369–391.
  19. Korohoda W: Inżynieria komórkowa i tkankowa na początku XXI wieku – nowe nadzieje i nowe zagrożenia. Prace Komisji Zagrożeń Cywilizacyjnych PAU, 2002, 5, 109–123.
  20. Kucia M, Majka M, Ratajczak MZ: Plastyczność nieembrionalnych komórek macierzystych: fakt czy artefakt? Post Biol Kom 2003, 30, supl. 21, 3–16.
  21. Alison MR, Poulsom R, Forbes S, Wright NA: An introduction to stem cells. J Pathol 2002, 197, 4, 419–423.
  22. Pojda Z: Kliniczne zastosowania komórek macierzystych – stan obecny i perspektywy: nowotwory. J. Oncol 2002, 52, 145–150.
  23. Moore KA, Ema H, Lemischka IR: In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997, 89, 12, 4337–4347.
  24. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M, Goldman SA: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003, 9, 4, 439–447.
  25. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H: Isolation and characterization of neural progenitor cells from post−mortem human cortex. J Neurosci Res 2003, 74, 6, 838–851.
  26. Xu Y, Kimura K, Matsumoto N, Ide C: Isolation of neural stem cells from the forebrain of deceased early postnatal and adult rats with protracted post−mortem intervals. J Neurosci Res 2003, 74, 4, 533–540.
  27. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska−Janik K: Human cord blood−derived cells attain neuronal and glial features in vitro. J Cell Sci 2002, 115 (Pt 10), 2131–2138.
  28. Toma JG, Akhavan M, Fernandes KJ, Barnabe−Heider F, Sadikot A, Kaplan DR, Miller FD: Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001, 3, 9, 778–784.
  29. Pojda Z, Machaj EK, Gajkowska A, Ołdak T, Jastrzewska M: Badanie potencjalnej przydatności klinicznej komórek macierzystych uzyskiwanych z krwi pępowinowej. Post Biol Kom 2003, 30, supl. 21, 127–138.
  30. Wiktor−Jędrzejczak W, Urbanowska E, Rokicka M, Król M, Król M, Torosjan T, Tomaszewska A, Paluszewska M, Gronkowska A: Wstępna ocena możliwości wykorzystania krwiotwórczych komórek macierzystych pozyskanych z różnych dawców krwi pępowinowej do jednoczesnego przeszczepiania u biorców dorosłych. Post Biol Kom 2003, 30, supl. 21, 139–147.
  31. Li X, Xu J, Bai Y, Wang X, Dai X, Liu Y, Zhang J, Zou J, Shen L, Li L: Isolation and characterization of neural stem cells from human fetal striatum. Biochem Biophys Res Commun 2005, 326, 425–434.
  32. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A 2000, 97, 11, 6126–6131. 502 D. M. OLSZEWSKA−SŁONINA et al.
  33. Weissman IL, Anderson DJ, Gage F: Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001, 17, 387–403.
  34. Verfaillie CM: Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002, 12, 11, 502–508.
  35. Korbling M, Anderlini P: Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 2001, 98, 10, 2900–2908.
  36. Park IJ, Kim HC, Yu CS, Yoo JH, Kim JC: Cutoff Values of Preoperative s−CEA Levels for Predicting Survivals after Curative Resection of Colorectal Cancer. J Korean Med Sci 2005, 20, 4, 624–627.
  37. Poulsom R, Alison MR, Forbes SJ, Wright NA: Adult stem cell plasticity. J Pathol. 2002, 197, 4, 441–456.
  38. Abkowitz JL: Can human hematopoietic stem cells become skin, gut, or liver cells? N Engl J Med 2002, 346, 10, 770–772.
  39. Shih C, DiGiusto D, Mamelak A, LeBon T, Forman SJ: Hematopoietic potential of neural stem cells: plasticity versus heterogeneity. Leuk Lymphoma 2002, 12, 43, 2263–2268.
  40. Shih CC, DiGiusto D, Mamelak A, Lebon T, Forman SJ: Hematopoietic potential of neural stem cells: plasticity versus heterogeneity. Leuk Lymphoma. 2002, 43, 12, 2263–2268.
  41. Guo X, Du J, Zheng Q, Yang S, Liu Y, Duan D, Yi C: Expression of transforming growth factor beta 1 in mesenchymal stem cells: potential utility in molecular tissue engineering for osteochondral repair. J Tongji Med Univ 2002, 22, 2, 112–115.
  42. Daley GQ, Goodell MA, Snyder EY: Realistic prospects for stem cell therapeutics. Hematology (Am Soc Hematol Educ Program) 2003, 398–418.
  43. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK: Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001, 97, 5, 1227–1231.
  44. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK: Transplantability and therapeutic effects of bone marrow−derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999, 5, 3, 309–313.
  45. Anselme K, Broux O, Noel B, Bouxin B, Bascoulergue G, Dudermel AF, Bianchi F, Jeanfils J, Hardouin P: In vitro control of human bone marrow stromal cells for bone tissue engineering. Tissue Eng 2002, 8, 6, 941–953.
  46. Perry TE, Roth SJ: Cardiovascular tissue engineering: constructing living tissue cardiac valves and blood vessels using bone marrow, umbilical cord blood, and peripheral blood cells. J Cardiovasc Nurs 2003, 18, 1, 30–37.
  47. Pan XH, Han YB, Guo KY: Pluripotential of human adult stem cells and its application in reparative and reconstructive surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2002, 16, 5, 329–332.
  48. Prelle K, Zink N, Wolf E: Pluripotent stem cells−model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol 2002, 31, 3, 169–186.