Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
5-Year IF – 2.0, IF – 1.9, JCI (2024) – 0.43
Scopus CiteScore – 4.3
Q1 in SJR 2024, SJR score – 0.598, H-index: 49 (SJR)
ICV – 161.00; MNiSW – 70 pts
Initial editorial assessment and first decision within 24 h

ISSN 1899–5276 (print), ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/197425

Publication type: editorial

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Tanaka M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics [published online as ahead of print on December 20, 2024]. Adv Clin Exp Med. 2024. doi:10.17219/acem/197425

Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics

Masaru Tanaka1,A,B,C,D,E,F

1 HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Hungary

Abstract

Mental health diagnostics is undergoing a transformation, with a shift away from traditional categorical systems like the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and the International Classification of Diseases, 11th Revision (ICD-11), and toward innovative frameworks like the Hierarchical Taxonomy of Psychopathology (HiTOP) and the Research Domain Criteria (RDoC). These emerging models prioritize dimensional and biobehavioral approaches in order to overcome limitations such as oversimplification, comorbidity and heterogeneity. This editorial explores the challenges of implementing these paradigms, such as the need for empirical validation, interdisciplinary collaboration and clinician training. It highlights the importance of advanced tools, biomarkers and technological integration to improve precision in diagnosis and treatment. Future research directions include creating reliable dimensional assessment methods, conducting longitudinal studies and fostering interdisciplinary networks. By bridging traditional and emerging frameworks, the field can progress toward personalized, biologically informed mental health treatment. This transition necessitates collaboration among researchers, clinicians and policymakers to improve diagnostic accuracy and treatment outcomes for those affected by mental health disorders.

Key words: precision medicine, Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5), International Classification of Diseases 11th Revision (ICD-11), Hierarchical Taxonomy of Psychopathology (HiTOP), Research Domain Criteria (RDoC)

Introduction: The established frameworks

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and the International Classification of Diseases, 11th Revision (ICD-11), are foundational tools in the field of mental health. Developed through extensive research and international collaboration, these categorical classification systems have provided clinicians with standardized criteria for diagnosing mental disorders.1, 2 Understanding their historical context and clinical significance sheds light on their pivotal role in shaping contemporary psychiatric practice.3, 4 One of the key strengths of categorical diagnosis, as embodied by DSM-5 and ICD-11, is the facilitation of clear communication among healthcare professionals. By providing specific diagnostic labels, these manuals help ensure that practitioners across different settings and regions can accurately identify and treat mental health conditions.5 This standardization also supports epidemiological studies and informs public health policies by offering consistent data on the prevalence and incidence of disorders6(Table 17, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17).

However, despite their widespread use, DSM-5 and ICD-11 have faced criticism regarding their limitations.18 The categorical approach can sometimes oversimplify the complexity of mental health by forcing symptoms into rigid boxes, potentially overlooking the nuanced spectrum of individual experiences.19 Issues such as comorbidity and heterogeneity within diagnostic categories highlight the need for a more dimensional understanding of mental disorders.20, 21, 22, 23 The DSM-5 has increasingly integrated dimensional information into its traditionally categorical framework, recognizing that personality disorders can be more accurately described along a spectrum of trait dimensions.24, 25, 26 This includes encouraging clinicians to rate the severity of key symptoms in the schizophrenia spectrum and other psychotic disorders, as well as specifying dimensional levels of severity for autism spectrum disorders and substance use disorders.27, 28, 29 In addition, Section III of the DSM-5 features cross-cutting symptom measures and severity rating scales that can be applied across multiple diagnostic categories – enhancing precision and reflecting the manual’s broader shift toward spectrum-based approaches.30, 31, 32 Acknowledging these criticisms and recent trends is essential as the field considers transitioning to new frameworks like the Hierarchical Taxonomy of Psychopathology (HiTOP) and the Research Domain Criteria (RDoC), which aim to address these limitations33 (Table 17, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17). This editorial seeks to advance beyond existing commentaries by synthesizing cutting-edge dimensional frameworks and established categorical approaches, thereby offering a uniquely comprehensive perspective that not only bridges critical gaps in the literature but also sets a new standard for clinical application and future research.

Emerging paradigms: the Hierarchical Taxonomy of Psychopathology (HiTOP) and the Research Domain Criteria (RDoC)

The HiTOP represents a significant shift from traditional categorical models by adopting a dimensional perspective on mental disorders.14, 34, 35 Rather than viewing mental health conditions as distinct categories, HiTOP organizes psychopathology along a spectrum of symptom dimensions and hierarchical structures.12, 14, 36 This approach acknowledges the overlap and comorbidity often seen in mental health diagnoses, aiming to provide a more nuanced and accurate representation of an individual’s psychological functioning.14, 34, 37, 38 By focusing on symptom severity and patterns rather than strict diagnostic labels, HiTOP facilitates personalized assessments and interventions, potentially improving treatment outcomes.13, 38

The RDoC initiative, developed by the National Institute of Mental Health (NIMH), seeks to redefine mental health diagnoses through the lens of biobehavioral systems and neurobiological mechanisms.15, 16, 39 It emphasizes the importance of understanding mental disorders based on underlying genetic, neural and behavioral components across 5 domains: negative valence systems, positive valence systems, cognitive systems, social processes, and arousal/regulatory systems.40, 41, 42 This framework encourages researchers to investigate the fundamental processes that contribute to mental health conditions, promoting a more integrated approach that spans from basic neuroscience to clinical practice.16, 40, 41, 43 By aligning diagnostic criteria with biological markers and behavioral indicators, RDoC aims to enhance the precision of mental health assessments and foster the development of targeted treatments.39, 44, 45, 46

Challenges in transitioning to new frameworks

Transitioning to frameworks like HiTOP and RDoC introduces significant research barriers and methodological challenges. One primary hurdle is the need for extensive empirical validation of these new models across diverse populations.47 The dimensional and biobehavioral nature of HiTOP and RDoC requires large-scale, longitudinal studies to establish reliability and validity, which demands considerable time and resources.48 Additionally, researchers must develop new assessment tools and metrics that can accurately capture the continuous spectrum of mental health symptoms, moving away from traditional categorical measures.49, 50 There is also the challenge of integrating biological data with psychological assessments, necessitating interdisciplinary collaboration between neuroscientists, psychologists and psychiatrists.51 Navigating these methodological complexities is crucial for the successful adoption of these emerging paradigms.52

Implementing HiTOP and RDoC in clinical settings presents challenges related to practitioner training and acceptance. Clinicians are accustomed to the DSM-5 and ICD-11 systems, and shifting to new frameworks requires substantial education and adjustment.53 The dimensional approaches may initially seem abstract or less intuitive compared to categorical diagnoses, potentially leading to resistance among practitioners.53 Training programs must be developed to familiarize clinicians with the new concepts, assessment methods and implications for treatment planning.48 Moreover, there is a need to demonstrate the practical benefits of these frameworks in improving patient outcomes to encourage their adoption.47, 54 Ensuring that clinicians are adequately supported during this transition is essential for the frameworks to gain traction in everyday practice.55

Integrating HiTOP and RDoC with existing diagnostic systems poses significant logistical and conceptual challenges.55 The current healthcare infrastructure, insurance policies and legal frameworks are deeply intertwined with the DSM and ICD classifications.53 Transitioning to new models requires careful alignment to avoid discrepancies in diagnosis, billing and treatment authorization.38 There is also the risk of fragmentation if some practitioners adopt the new frameworks while others continue with traditional systems.56 Developing a coherent strategy that allows for compatibility between old and new models is imperative.57 This might involve creating crosswalks between diagnostic criteria or establishing hybrid models that incorporate elements of both categorical and dimensional approaches.58 Successfully navigating this integration is key to ensuring a smooth transition without disrupting patient care.59

Proposing future research directions

Advancing the implementation of HiTOP and RDoC frameworks hinges on the development of reliable and valid dimensional assessment tools.47 Current diagnostic instruments are largely rooted in categorical models, which may not capture the nuanced spectra of mental health symptoms emphasized by HiTOP and RDoC.49 Future research should focus on creating and validating tools that measure symptoms along continuous dimensions, allowing for more precise and individualized assessments.48 This involves leveraging psychometric techniques to ensure these tools are sensitive to variations across different populations and settings.60 Integrating technological advancements such as digital assessments and machine learning algorithms can enhance the accuracy and utility of these instruments in both research and clinical practice.61, 62, 63 Moreover, harnessing advanced artificial intelligence (AI) tools for predictive modeling, integrating multi-omic datasets (e.g., genomic, proteomic and metabolomic profiles) to identify novel biomarkers,64, 65, 66 and employing sophisticated human models (such as induced pluripotent stem cells or organ-on-a-chip platforms) can further refine and personalize diagnostic strategies.67, 68, 69 These approaches not only improve the sensitivity and specificity of assessments but also open avenues for innovative, tailored interventions, ultimately bridging the gap between theoretical constructs and pragmatic clinical solutions.70, 71, 72

Longitudinal studies are essential for understanding the developmental trajectories and causal mechanisms underlying mental disorders within the HiTOP and RDoC frameworks.47, 73 Such studies can illuminate how genetic, environmental and neurobiological factors interact over time to influence psychopathology.15, 74, 75 Future research should prioritize long-term, multi-wave studies that incorporate a variety of biobehavioral measures, including neuroimaging, genetic analyses and physiological assessments.16, 76, 77, 78 To achieve these goals, researchers can employ advanced data-integration platforms and standardized protocols to streamline participant tracking across multiple time points.79, 80 Collaborative, multi-site consortiums can leverage pooled datasets to enhance statistical power and cross-validate findings,81, 82 while novel analytical approaches – such as machine learning, network analyses and Bayesian modeling – can discern subtle patterns of risk and resilience.83, 84 Additionally, incorporating ecological momentary assessments via mobile devices, collecting wearable sensor data and integrating electronic health records can provide rich, context-sensitive information that complements traditional laboratory-based measures.85, 86 Such comprehensive, technology-driven methodologies will ultimately enable more nuanced insights into the dynamic interplay of risk factors and resilience processes, paving the way toward more predictive, preventative and personalized mental healthcare.87, 88 These studies can help identify early biomarkers of mental health conditions, track changes in symptom dimensions and evaluate the effectiveness of interventions over time.49, 89, 90 By embracing a longitudinal approach, researchers can contribute to more dynamic and predictive models of mental health.35

The complexity of mental health necessitates collaboration across multiple disciplines, particularly emphasizing preclinical research.91 Future research should encourage partnerships between psychologists, psychiatrists, neuroscientists, geneticists, and other related professionals to integrate diverse perspectives and methodologies.92 This integrated approach could involve leveraging advanced genomic and neuroimaging techniques, harnessing machine learning analytics, employing preclinical models (such as induced pluripotent stem cells or organoid systems) and fostering multi-institutional collaborations to drive the development of more predictive, preventive and personalized interventions.67, 88, 93, 94, 95 Interdisciplinary teams can facilitate the exploration of mental disorders from biological, psychological and social angles, aligning with the comprehensive aims of HiTOP and RDoC.96 Establishing collaborative research networks and consortia can enhance data sharing, standardize methodologies and accelerate scientific advancements.97 Such cooperation is vital for developing holistic models of psychopathology and translating research findings into practical applications.98, 99, 100 Preclinical models, including advanced technologies like optogenetics and chemogenetics, are crucial for this integration, as they allow for the exploration of genetic and environmental factors in mental health.101, 102, 103

For HiTOP and RDoC to be effectively integrated into clinical practice, concerted efforts are needed to address policy and standardization challenges.38, 47 Future research should inform policy development by providing evidence on the benefits and feasibility of these new frameworks.104 Engaging with policymakers, professional organizations and regulatory bodies can facilitate the incorporation of dimensional and biobehavioral approaches into diagnostic guidelines and reimbursement structures.105, 106 Additionally, establishing standardized protocols and training programs will ensure consistent application among practitioners.107 Research should also explore strategies for bridging the gap between existing categorical systems and the new models to ease the transition and minimize disruptions in clinical care.48, 54, 60

Conclusions

The integration of dimensional, biobehavioral and categorical perspectives heralds a transformative era in mental health diagnostics. By merging the established strengths of frameworks like the DSM-5 and ICD-11 with the transdiagnostic insights of HiTOP and RDoC, the field stands poised to achieve unprecedented diagnostic precision, more personalized treatments and improved clinical outcomes. Emerging empirical evidence – from large-scale, longitudinal studies to compelling case-based examples – further underscores the value of expanding beyond narrow diagnostic boundaries. Realizing the full potential of these approaches, however, will demand concerted efforts on multiple fronts. Researchers must refine and validate comprehensive assessment tools that capture the complexity of psychopathological phenomena, while clinicians require training and resources to confidently apply these methods in diverse settings. Policymakers, educators and professional organizations will play pivotal roles in promoting interdisciplinary collaborations, providing supportive infrastructures and encouraging data sharing across institutions. Such integrative efforts will be bolstered by advanced computational techniques, the establishment of shared data repositories and the embrace of interdisciplinary teams capable of synthesizing varied perspectives. Moreover, global engagement and cross-cultural studies will be critical to ensuring that emerging models are broadly applicable, equitable and culturally sensitive. Although many of these proposals remain conceptual at present, ongoing empirical endeavors promise to anchor them in robust, evidence-based practice. By harmonizing traditional diagnostic schemas with cutting-edge dimensional frameworks, the mental health community can forge a new path – one that better captures individual differences, guides more targeted interventions, reduces stigma, and ultimately improves the lives of individuals affected by mental health disorders worldwide.

Tables


Table 1. Summary table of mental disorder classification systems

System

Descriptions

Strengths

Weaknesses

Ref.

DSM-5

Primarily used in the USA for clinical diagnosis and research

Provides detailed criteria for diagnosis, widely used in research settings, and has a long history of use

Criticized for lack of validity, influenced by commercial factors, and slow to incorporate new findings

7, 8, 9

ICD-11

Used globally for clinical diagnosis and public health purposes

Harmonized with DSM-5 to some extent, focuses on clinical utility, and is widely accepted internationally

Contains some disorder categories not present in DSM-5, and differences in priorities and uses can lead to inconsistencies

1, 10, 11

HiTOP

Classify mental disorders based on empirical data and dimensional traits

Integrates maladaptive personality traits into a single system, offers a dimensional approach that may better capture the complexity of mental disorders

Still under development and less widely adopted compared to DSM-5 and ICD-11

12, 13, 14

RDoC

Integrate basic behavioral and neuroscience research to understand mental disorders

Focuses on understanding the biological bases of mental disorders, offers a dimensional approach that can enhance research precision

Lacks extensive validation, and its practical application in clinical settings is still limited

15, 16, 17

DSM-5 – Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; ICD-11 – International Classification of Diseases, 11th Revision; HiTOP – Hierarchical Taxonomy of Psychopathology; RDoC – Research Domain Criteria.

References (107)

  1. Sampogna G, Del Vecchio V, Giallonardo V, et al. Il processo di revisione dei sistemi diagnostici in psichiatria: differenze tra ICD-11 e DSM-5. Riv Psichiatr. 2020;55(6):323–330. doi:10.1708/3503.34889
  2. Vujnovic M, Manukhina O, Reed GM, Theodorakis PN, Fountoulakis KN. ICD-11 Revision of Mental Disorders: The global standard for health data, clinical documentation, and statistical aggregation. Consort Psychiatr. 2021;2(2):3–6. doi:10.17816/CP74
  3. Boland RJ. DSM-5® Guidebook: The essential companion to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. J Psychiatr Pract. 2015;21(2):171–173. doi:10.1097/01.pra.0000462610.04264.fa
  4. Cooper SE. DSM-5, ICD-10, ICD-11, the Psychodynamic Diagnostic Manual, and person-centered integrative diagnosis: An overview for college mental health therapists. J Coll Stud Psychother. 2014;28(3):201–217. doi:10.1080/87568225.2014.914828
  5. Auger N, Potter BJ, Ukah UV, et al. Anorexia nervosa and the long-term risk of mortality in women. World Psychiatry. 2021;20(3):448–449. doi:10.1002/wps.20904
  6. First MB, Rebello TJ, Keeley JW, et al. Do mental health professionals use diagnostic classifications the way we think they do? A global survey. World Psychiatry. 2018;17(2):187–195. doi:10.1002/wps.20525
  7. Regier DA, Narrow WE, Clarke DE, et al. DSM-5 field trials in the United States and Canada, Part II: Test-retest reliability of selected categorical diagnoses. Am J Psychiatry. 2013;170(1):59–70. doi:10.1176/appi.ajp.2012.12070999
  8. Salazar De Pablo G, Catalan A, Fusar-Poli P. Clinical validity of DSM-5 attenuated psychosis syndrome: Advances in diagnosis, prognosis, and treatment. JAMA Psychiatry. 2020;77(3):311. doi:10.1001/jamapsychiatry.2019.3561
  9. Wakefield JC. The DSM-5 debate over the bereavement exclusion: Psychiatric diagnosis and the future of empirically supported treatment. Clin Psychol Rev. 2013;33(7):825–845. doi:10.1016/j.cpr.2013.03.007
  10. Claudino AM, Pike KM, Hay P, et al. The classification of feeding and eating disorders in the ICD-11: Results of a field study comparing proposed ICD-11 guidelines with existing ICD-10 guidelines. BMC Med. 2019;17(1):93. doi:10.1186/s12916-019-1327-4
  11. First MB, Gaebel W, Maj M, et al. An organization- and category-level comparison of diagnostic requirements for mental disorders in ICD-11 and DSM-5. World Psychiatry. 2021;20(1):34–51. doi:10.1002/wps.20825
  12. Ringwald WR, Forbes MK, Wright AGC. Meta-analysis of structural evidence for the Hierarchical Taxonomy of Psychopathology (HiTOP) model. Psychol Med. 2021;53(2):533–546. doi:10.1017/S0033291721001902
  13. Watson D, Levin-Aspenson HF, Waszczuk MA, et al. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP). III. Emotional dysfunction superspectrum. World Psychiatry. 2022;21(1):26–54. doi:10.1002/wps.20943
  14. Kotov R, Krueger RF, Watson D, et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J Abnorm Psychol. 2017;126(4):454–477. doi:10.1037/abn0000258
  15. Cuthbert BN. The role of RDoC in future classification of mental disorders. Dialogues Clin Neurosci. 2020;22(1):81–85. doi:10.31887/DCNS.2020.22.1/bcuthbert
  16. Carcone D, Ruocco AC. Six years of research on the National Institute of Mental Health’s Research Domain Criteria (RDoC) Initiative: A systematic review. Front Cell Neurosci. 2017;11:46. doi:10.3389/fncel.2017.00046
  17. Dean CE. Neural circuitry and precision medicines for mental disorders: Are they compatible? Psychol Med. 2019;49(1):1–8. doi:10.1017/S0033291718003252
  18. Tyrer P. Time to choose: DSM-5, ICD-11 or both? Arch Psych Psych. 2014;16(3):5–8. doi:10.12740/APP/28380
  19. Gitlin MJ, Miklowitz DJ. Psychiatric diagnosis in ICD-11: Lessons learned (or not) from the mood disorders section in DSM-5. Aust N Z J Psychiatry. 2014;48(1):89–90. doi:10.1177/0004867413515952
  20. McGuffin P, Farmer A. Moving from DSM-5 to ICD-11: A joint problem? Aust N Z J Psychiatry. 2014;48(2):194–196. doi:10.1177/0004867413520254
  21. Panov G, Panova P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Front Psychiatry. 2023;14:1120974. doi:10.3389/fpsyt.2023.1120974
  22. Di Gregorio F, Battaglia S. The intricate brain–body interaction in psychiatric and neurological diseases. Adv Clin Exp Med. 2024;33(4):321–326. doi:10.17219/acem/185689
  23. Tanaka M, Tuka B, Vécsei L. Navigating the neurobiology of migraine: From pathways to potential therapies. Cells. 2024;13(13):1098. doi:10.3390/cells13131098
  24. Strickland CM, Hopwood CJ, Bornovalova MA, Rojas EC, Krueger RF, Patrick CJ. Categorical and dimensional conceptions of personality pathology in DSM-5: Toward a model-based synthesis. J Pers Disord. 2019;33(2):185–213. doi:10.1521/pedi_2018_32_339
  25. Sevecke K, Schmeck K, Krischer M. The dimensional-categorical hybrid model of personality disorders in DSM-5 from an adolescent psychiatric perspective: Criticism and critical outlook [in German]. Z Kinder Jugendpsychiatr Psychother. 2014;42(4):279–283. doi:10.1024/1422-4917/a000300
  26. Brown TA, Barlow DH. Dimensional versus categorical classification of mental disorders in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders and beyond: Comment on the special section. J Abnorm Psychol. 2005;114(4):551–556. doi:10.1037/0021-843X.114.4.551
  27. Möller HJ, Bandelow B, Bauer M, et al. DSM-5 reviewed from different angles: Goal attainment, rationality, use of evidence, consequences. Part 2: Bipolar disorders, schizophrenia spectrum disorders, anxiety disorders, obsessive–compulsive disorders, trauma- and stressor-related disorders, personality disorders, substance-related and addictive disorders, neurocognitive disorders. Eur Arch Psychiatry Clin Neurosci. 2015;265(2):87–106. doi:10.1007/s00406-014-0521-9
  28. Hopwood CJ, Malone JC, Ansell EB, et al. Personality assessment in DSM-5: Empirical support for rating severity, style, and traits. J Pers Disord. 2011;25(3):305–320. doi:10.1521/pedi.2011.25.3.305
  29. Hualparuca-Olivera L, Caycho-Rodríguez T. Diagnostic accuracy of severity measures of ICD-11 and DSM-5 personality disorder: Clarifying the clinical landscape with the most up-to-date evidence. Front Psychiatry. 2023;14:1209679. doi:10.3389/fpsyt.2023.1209679
  30. Zimmermann J, Kerber A, Rek K, Hopwood CJ, Krueger RF. A brief but comprehensive review of research on the alternative DSM-5 model for personality disorders. Curr Psychiatry Rep. 2019;21(9):92. doi:10.1007/s11920-019-1079-z
  31. Hualparuca-Olivera L, Caycho-Rodríguez T, Torales J, Ramos-Campos D. Convergence between the dimensional PD models of ICD-11 and DSM-5: A meta-analytic approach. Front Psychiatry. 2023;14:1325583. doi:10.3389/fpsyt.2023.1325583
  32. Henriques-Calado J, Gonçalves B, Marques C, et al. In light of the DSM-5 dimensional model of personality: Borderline personality disorder at the crossroads with the bipolar spectrum. J Affect Disord. 2021;294:897–907. doi:10.1016/j.jad.2021.07.047
  33. Nassir Ghaemi S. Against ‘pragmatism’ in DSM/ICD: A commentary on prodromal psychosis. Acta Psychiatr Scand. 2013;127(3):253–253. doi:10.1111/acps.12052
  34. Kotov R, Krueger RF, Watson D. A paradigm shift in psychiatric classification: The Hierarchical Taxonomy Of Psychopathology (HiTOP). World Psychiatry. 2018;17(1):24–25. doi:10.1002/wps.20478
  35. Kotov R, Krueger RF, Watson D, et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A quantitative nosology based on consensus of evidence. Annu Rev Clin Psychol. 2021;17(1):83–108. doi:10.1146/annurev-clinpsy-081219-093304
  36. Wendt LP, Jankowsky K, Schroeders U, et al. Mapping established psychopathology scales onto the Hierarchical Taxonomy of Psychopathology (HiTOP). Personal Ment Health. 2023;17(2):117–134. doi:10.1002/pmh.1566
  37. Panov G, Dyulgerova S, Panova P, Stefanova S. Untangling depression in schizophrenia: The role of disorganized and obsessive-compulsive symptoms and the duration of untreated psychosis. Biomedicines. 2024;12(11):2646. doi:10.3390/biomedicines12112646
  38. Ruggero CJ, Kotov R, Hopwood CJ, et al. Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) into clinical practice. J Consult Clin Psychol. 2019;87(12):1069–1084. doi:10.1037/ccp0000452
  39. Vilar A, Pérez-Sola V, Blasco MJ, et al. Translational research in psychiatry: The Research Domain Criteria Project (RDoC). Rev Psiquiatr Salud Ment (Engl Ed). 2019;12(3):187–195. doi:10.1016/j.rpsm.2018.04.002
  40. Yager J, Feinstein RE. Potential applications of the National Institute of Mental Health’s Research Domain Criteria (RDoC) to clinical psychiatric practice: How RDoC might be used in assessment, diagnostic processes, case formulation, treatment planning, and clinical notes. J Clin Psychiatry. 2017;78(4):423–432. doi:10.4088/JCP.15nr10476
  41. Woody ML, Gibb BE. Integrating NIMH Research Domain Criteria (RDoC) into depression research. Curr Opin Psychol. 2015;4:6–12. doi:10.1016/j.copsyc.2015.01.004
  42. Li JJ, Zhang Q, Wang Z, Lu Q. Research Domain Criteria (RDoC) mechanisms of transdiagnostic polygenic risk for trajectories of depression: From early adolescence to adulthood. J Psychopatol Clin Sci. 2022;131(6):567–574. doi:10.1037/abn0000659
  43. Pacheco J, Garvey MA, Sarampote CS, Cohen ED, Murphy ER, Friedman-Hill SR. Annual Research Review: The contributions of the RDoC research framework on understanding the neurodevelopmental origins, progression and treatment of mental illnesses. J Child Psychol Psychiatry. 2022;63(4):360–376. doi:10.1111/jcpp.13543
  44. Cuthbert BN. Research Domain Criteria: Toward future psychiatric nosologies. Dialogues Clin Neurosci. 2015;17(1):89–97. doi:10.31887/DCNS.2015.17.1/bcuthbert
  45. Calabrò M, Fabbri C, Kasper S, et al. Research Domain Criteria (RDoC): A perspective to probe the biological background behind treatment efficacy in depression. Curr Med Chem. 2021;28(22):4296–4320. doi:10.2174/0929867328666210104104938
  46. Drury S, Cuthbert B. Advancing pediatric psychiatry research: Linking neurobiological processes to novel treatment and diagnosis through the Research Domain Criteria (RDoC) Project. Ther Innov Regul Sci. 2015;49(5):643–646. doi:10.1177/2168479015596019
  47. Michelini G, Palumbo IM, DeYoung CG, Latzman RD, Kotov R. Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clin Psychol Rev. 2021;86:102025. doi:10.1016/j.cpr.2021.102025
  48. Stanton K, McDonnell CG, Hayden EP, Watson D. Transdiagnostic approaches to psychopathology measurement: Recommendations for measure selection, data analysis, and participant recruitment. J Abnorm Psychol. 2020;129(1):21–28. doi:10.1037/abn0000464
  49. Latzman RD, DeYoung CG. Using empirically-derived dimensional phenotypes to accelerate clinical neuroscience: The Hierarchical Taxonomy of Psychopathology (HiTOP) framework. Neuropsychopharmacology. 2020;45(7):1083–1085. doi:10.1038/s41386-020-0639-6
  50. Tanaka M, Szabó Á, Vécsei L. Redefining roles: A paradigm shift in tryptophan–kynurenine metabolism for innovative clinical applications. Int J Mol Sci. 2024;25(23):12767. doi:10.3390/ijms252312767
  51. Scierka L, Mena-Hurtado C, Romain G, et al. Abstract 10253: Integrating mental health screening into a health system for measurement-based care of patients with peripheral artery disease. Circulation. 2022;146(Suppl 1):10253. doi:10.1161/circ.146.suppl_1.10253
  52. Newson JJ, Hunter D, Thiagarajan TC. The heterogeneity of mental health assessment. Front Psychiatry. 2020;11:76. doi:10.3389/fpsyt.2020.00076
  53. Rief W, Hofmann SG, Berg M, et al. Do we need a novel framework for classifying psychopathology? A discussion paper. Clin Psychol Eur. 2023;5(4):e11699. doi:10.32872/cpe.11699
  54. Cuthbert BN. The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. Forum – The Research Domain Criteria Project. World Psychiatry. 2014;13(1):28–35. doi:10.1002/wps.20087
  55. Lilienfeld SO, Treadway MT. Clashing diagnostic approaches: DSM-ICD versus RDoC. Annu Rev Clin Psychol. 2016;12(1):435–463. doi:10.1146/annurev-clinpsy-021815-093122
  56. Spicer N, Agyepong I, Ottersen T, Jahn A, Ooms G. ‘It’s far too complicated’: Why fragmentation persists in global health. Global Health. 2020;16(1):60. doi:10.1186/s12992-020-00592-1
  57. Nolte E, Knai C, Hofmarcher M, et al. Overcoming fragmentation in health care: Chronic care in Austria, Germany and the Netherlands. Health Econ Policy Law. 2012;7(1):125–146. doi:10.1017/S1744133111000338
  58. Peterson K, Anderson J, Bourne D, et al. Health care coordination theoretical frameworks: A systematic scoping review to increase their understanding and use in practice. J Gen Intern Med. 2019;34(Suppl 1):90–98. doi:10.1007/s11606-019-04966-z
  59. Bettger JP. The 6 A’s Global Transitional Care Model for addressing hospital-to-home care fragmentation. Int J Integr Care. 2018;18(Suppl 2):159. doi:10.5334/ijic.s2159
  60. Lenzenweger MF. Schizotypy, schizotypic psychopathology and schizophrenia. World Psychiatry. 2018;17(1):25–26. doi:10.1002/wps.20479
  61. Brown JR, Hicks AD, Sellbom M, McCord DM. Further mapping of the MMPI-3 onto HiTOP in a primary medical care and a college student sample. Psychol Assess. 2023;35(7):547–558. doi:10.1037/pas0001218
  62. Battaglia S, Nazzi C, Fullana MA, Di Pellegrino G, Borgomaneri S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav Res Ther. 2024;178:104548. doi:10.1016/j.brat.2024.104548
  63. Adamu MJ, Kawuwa HB, Qiang L, et al. Efficient and accurate brain tumor classification using hybrid mobileNetV2–support vector machine for magnetic resonance imaging diagnostics in neoplasms. Brain Sci. 2024;14(12):1178. doi:10.3390/brainsci14121178
  64. Ozaki Y, Broughton P, Abdollahi H, Valafar H, Blenda AV. Integrating omics data and AI for cancer diagnosis and prognosis. Cancers (Basel). 2024;16(13):2448. doi:10.3390/cancers16132448
  65. Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics analyses in oncology: A review of machine learning methods and tools. Front Oncol. 2020;10:1030. doi:10.3389/fonc.2020.01030
  66. Mann M, Kumar C, Zeng WF, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–770. doi:10.1016/j.cels.2021.06.006
  67. Vo QD, Saito Y, Ida T, Nakamura K, Yuasa S. The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review. PLoS One. 2024;19(5):e0302537. doi:10.1371/journal.pone.0302537
  68. Kusumoto D, Yuasa S, Fukuda K. Induced pluripotent stem cell-based drug screening by use of artificial intelligence. Pharmaceuticals (Basel). 2022;15(5):562. doi:10.3390/ph15050562
  69. Ho B, Pek N, Soh BS. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int J Mol Sci. 2018;19(4):936. doi:10.3390/ijms19040936
  70. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology: New tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703–715. doi:10.1038/s41571-019-0252-y
  71. Pandey P, Mayank K, Sharma S. Bio-marker cancer prediction system using artificial intelligence. In: 2023 International Conference on Integration of Computational Intelligent System (ICICIS). Pune, India: Institute of Electrical and Electronics Engineers (IEEE); 2023:1–5. doi:10.1109/ICICIS56802.2023.10430291
  72. Patel SK, George B, Rai V. Artificial intelligence to decode cancer mechanism: Beyond patient stratification for precision oncology. Front Pharmacol. 2020;11:1177. doi:10.3389/fphar.2020.01177
  73. De Lima EP, Tanaka M, Lamas CB, et al. Vascular impairment, muscle atrophy, and cognitive decline: Critical age-related conditions. Biomedicines. 2024;12(9):2096. doi:10.3390/biomedicines12092096
  74. Tanaka M, Vécsei L. A decade of dedication: Pioneering perspectives on neurological diseases and mental illnesses. Biomedicines. 2024;12(5):1083. doi:10.3390/biomedicines12051083
  75. Battaglia S, Nazzi C, Lonsdorf TB, Thayer JF. Neuropsychobiology of fear-induced bradycardia in humans: Progress and pitfalls. Mol Psychiatry. 2024;29(12):3826–3840. doi:10.1038/s41380-024-02600-x
  76. Panov G, Dyulgerova S, Panova P. Cognition in patients with schizophrenia: Interplay between working memory, disorganized symptoms, dissociation, and the onset and duration of psychosis, as well as resistance to treatment. Biomedicines. 2023;11(12):3114. doi:10.3390/biomedicines11123114
  77. Adamu MJ, Qiang L, Nyatega CO, et al. Unraveling the pathophysiology of schizophrenia: Insights from structural magnetic resonance imaging studies. Front Psychiatry. 2023;14:1188603. doi:10.3389/fpsyt.2023.1188603
  78. Nyatega CO, Qiang L, Adamu MJ, Kawuwa HB. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study. Front Psychiatry. 2022;13:1027907. doi:10.3389/fpsyt.2022.1027907
  79. Mullie L, Afilalo J, Archambault P, et al. CODA: An open-source platform for federated analysis and machine learning on distributed healthcare data. J Am Med Inform Assoc. 2024;31(3):651–665. doi:10.1093/jamia/ocad235
  80. Muilu J, Peltonen L, Litton JE. The federated database: A basis for biobank-based post-genome studies, integrating phenome and genome data from 600 000 twin pairs in Europe. Eur J Hum Genet. 2007;15(7):718–723. doi:10.1038/sj.ejhg.5201850
  81. Lokhande VS, Mishra A, Diers K, et al. Constrained harmonization algorithm for pooling multi-site datasets. Alzheimers Dement (N Y). 2021;17(Suppl 1):e056234. doi:10.1002/alz.056234
  82. Adhikari BM, Jahanshad N, Shukla D, et al. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: An ENIGMA rs-fMRI protocol. Brain Imaging Behav. 2019;13(5):1453–1467. doi:10.1007/s11682-018-9941-x
  83. Marcot BG, Penman TD. Advances in Bayesian network modelling: Integration of modelling technologies. Environmental Modelling & Software. 2019;111:386–393. doi:10.1016/j.envsoft.2018.09.016
  84. Hosseini S, Ivanov D. Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Exp Syst Appl. 2020;161:113649. doi:10.1016/j.eswa.2020.113649
  85. Colombo D, Fernández-Álvarez J, Patané A, et al. Current state and future directions of technology-based ecological momentary assessment and intervention for major depressive disorder: A systematic review. J Clin Med. 2019;8(4):465. doi:10.3390/jcm8040465
  86. Dao KP, De Cocker K, Tong HL, Kocaballi AB, Chow C, Laranjo L. Smartphone-delivered ecological momentary interventions based on ecological momentary assessments to promote health behaviors: Systematic review and adapted checklist for reporting ecological momentary assessment and intervention studies. JMIR Mhealth Uhealth. 2021;9(11):e22890. doi:10.2196/22890
  87. Balaskas A, Schueller SM, Cox AL, Doherty G. Ecological momentary interventions for mental health: A scoping review. PLoS One. 2021;16(3):e0248152. doi:10.1371/journal.pone.0248152
  88. Fechtelpeter J, Rauschenberg C, Jalalabadi H, et al. A control theoretic approach to evaluate and inform ecological momentary interventions. Int J Methods Psych Res. 2024;33(4):e70001. doi:10.1002/mpr.70001
  89. Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson’s disease: Dr. Heinz Reichmann’s pioneering research and future research direction. J Neural Transm. 2024;131(12):1367–1387. doi:10.1007/s00702-024-02812-z
  90. Nazzi C, Avenanti A, Battaglia S. The involvement of antioxidants in cognitive decline and neurodegeneration: Mens sana in corpore sano. Antioxidants (Basel). 2024;13(6):701. doi:10.3390/antiox13060701
  91. Fried EI, Robinaugh DJ. Systems all the way down: Embracing complexity in mental health research. BMC Med. 2020;18(1):205. doi:10.1186/s12916-020-01668-w
  92. King JD, Bao J, Manolova G, Achan E. The future of psychiatry commission. Lancet Psychiatry. 2018;5(1):14–15. doi:10.1016/S2215-0366(17)30484-4
  93. Pazzin D, Previato T, Budelon Gonçalves J, et al. Induced pluripotent stem cells and organoids in advancing neuropathology research and therapies. Cells. 2024;13(9):745. doi:10.3390/cells13090745
  94. Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci. 2017;24(1):59. doi:10.1186/s12929-017-0362-8
  95. Liloia D, Zamfira DA, Tanaka M, et al. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev. 2024;164:105791. doi:10.1016/j.neubiorev.2024.105791
  96. Durand F, Fleury MJ. A multilevel study of patient-centered care perceptions in mental health teams. BMC Health Serv Res. 2021;21(1):44. doi:10.1186/s12913-020-06054-z
  97. Leventhal G, Stamm KE, Washburn JJ, et al. Patterns of psychologists’ interprofessional collaboration across clinical practice settings. J Clin Psychol Med Settings. 2021;28(4):844–867. doi:10.1007/s10880-021-09802-3
  98. Castrillo P, Guijarro R, Cerviño M. Multidisciplinary approach to several mental disorders: Clinical case. Eur Psychiatry. 2017;41(Suppl 1):S712–S712. doi:10.1016/j.eurpsy.2017.01.1271
  99. Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. Biomedicines. 2024;12(3):574. doi:10.3390/biomedicines12030574
  100. Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neural correlates and molecular mechanisms of memory and learning. Int J Mol Sci. 2024;25(5):2724. doi:10.3390/ijms25052724
  101. Tanaka M, Szabó Á, Vécsei L. Preclinical modeling in depression and anxiety: Current challenges and future research directions. Adv Clin Exp Med. 2023;32(5):505–509. doi:10.17219/acem/165944
  102. Tanaka M, Battaglia S, Giménez-Llort L, et al. Innovation at the intersection: Emerging translational research in neurology and psychiatry. Cells. 2024;13(10):790. doi:10.3390/cells13100790
  103. Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging translational research in neurological and psychiatric diseases: From in vitro to in vivo models. Int J Mol Sci. 2023;24(21):15739. doi:10.3390/ijms242115739
  104. Sauer-Zavala S. Measurement to improve treatment delivery: A commentary on the HiTOP Measure Development Project. Assessment. 2022;29(1):93–98. doi:10.1177/10731911211050952
  105. Tyrer P. Dimensions fit the data, but can clinicians fit the dimensions? World Psychiatry. 2018;17(3):295–296. doi:10.1002/wps.20559
  106. Tanaka M, Vécsei L. From lab to life: Exploring cutting-edge models for neurological and psychiatric disorders. Biomedicines. 2024;12(3):613. doi:10.3390/biomedicines12030613
  107. Cutrer WB, Ehrenfeld JM. Protocolization, standardization and the need for adaptive expertise in our medical systems. J Med Syst. 2017;41(12):200. doi:10.1007/s10916-017-0852-y