Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/174494

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Li H, Zhen Z, Wei J, et al. Endogenous hsa-circ_0007113 binds hsa-miR-515-5p to regulate senescence in human embryonic lung fibroblasts. Tytul. [published online as ahead of print on December 23, 2023]. Adv Clin Exp Med. 2024. doi:10.17219/acem/174494

Endogenous hsa-circ_0007113 binds hsa-miR-515-5p to regulate senescence in human embryonic lung fibroblasts

Hualing Li1,2,A,B,C,D,E,F, Zhiyi Zhen1,B,C, Junjie Wei1,A,B,C, Xianxian Fan1,B,C, Pengfei Cao1,B,C, Yitang Zhang1,B,C, Yali Chen1,B,C, Yue Li1,E, Yifan Zhu1,C, Rui Wang1,C, Xingjie Ma3,C,E

1 Department of Biochemistry, Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Institute of Translational Medicine, Medical College, Yangzhou University, China

2 Department of Pathology, Jiangsu Key Laboratory of Human Zoonosis, Yangzhou University, China

3 Department of Intensive Care, The Affiliated Hospital of Yangzhou University, China

Graphical abstract


Graphical abstracts

Abstract

Background. Cellular senescence can lead to many diseases. However, the roles and regulation of circular RNAs (circRNAs) in senescence are poorly understood.

Objectives. To investigate the altered expression pattern and mechanism of circRNA during cellular senescence and find potential targets to prevent senescence.

Materials and methods. The Arraystar Human circRNA Array and bioinformatics were used to profile the differentially expressed circRNAs in human embryonic lung fibroblasts (IMR-90) between young cells and senescent cells and quantification in the clinical materials. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. The miRNA targets were predicted using TargetScan and miRanda.

Results. A total of 113 differentially expressed circRNAs were identified, including 109 upregulated and 4 downregulated circRNAs (fold change >2 and p-value <0.05). Real-time qualitative polymerase chain reaction (qPCR) showed that the expression levels of 4 circRNA were significantly increased in senescent cells, and that of hsa_circ_0007113 was significantly decreased, consistent with the microarray. siRNA against hsa_circ_0007113 increased p21 and p53 expression levels and β-gal staining. The hsa_circ_0007113 has a binding site for miR-515-5p, which is involved in regulating the p53/p21 signaling pathway. The expression level of hsa_circ_0007113 was also decreased in aged people.

Conclusions. The study showed an altered circRNA expression pattern in cellular senescence, which might play important roles in senescence-related physiological processes. These findings provide a new direction for studying the molecular mechanism underlying senescence and a new possibility for the treatment of senescence by modulating circRNAs.

Key words: senescence, human circRNA array, hsa_circ_0007113, hsa-miR-515-5p, P53/P21 pathway

Background

The essence of aging is cellular senescence, in which cellular functions gradually decrease or are lost, leading to a loss of tissue function. Cell senescence can be accelerated or enhanced by external environmental factors such as radiation, oxidizing agents and therapeutic agents.1, 2 Numerous mechanisms participate in cellular senescence, including DNA damage, telomeres, oncogenes, activated MAPK cascade, and p53 and p16lnk4a pathways.3, 4, 5, 6, 7

Non-coding RNAs play a vital role in the regulation of all cellular pathways.8 Recently, several studies revealed that non-coding RNAs are linked to the control of cellular senescence.9, 10, 11 Circular RNA (circRNA) is a special class of non-coding RNA, which has a closed circular structure protecting them from exonuclease R. Circular RNAs are conserved in evolution, stable, abundant, and show specific tissues and developmental stage expression.14, 15 Moreover, they have been shown to regulate microRNA (miRNA) expression at the transcriptional or post-transcriptional levels.12, 13 Specific circRNAs play important roles in human diseases such as cancer, stroke, ischemia, neurodegenerative disorders, and heart disease.16, 17, 18, 19, 20, 21, 22 However, so far, few studies have evaluated circRNA changes in cell senescence.21, 23, 24

Circular RNA can bind miRNA-induced silencing complexes via the miRNA response element and affect miRNA concentration to regulate the activity of the downstream gene.25, 26 However, the differential expression of circRNAs during senescence has only rarely been reported. Therefore, this study aimed to use the Arraystar Human circRNA Array to detect the changes in circRNA expression profiles during cellular senescence. Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses were carried out to anticipate the potential functions of circRNAs during senescence. These findings could provide a better understanding of cellular senescence and eventually slow down senescence associated with pathological conditions.

Objectives

We aimed to find the relationship between senescence and circRNAs with high-throughput quantitative analysis of circRNA. Furthermore, we quantified circRNAs in clinical samples to clarify the potential biomarkers of human aging, which can provide a certain clinical reference value for clinicians.

Materials and methods

Cell culture

The human embryonic lung fibroblast cell line IMR-90 was seeded in a CO2-incubator containing 5% CO2 at 37ºC in Dulbecco’s modified Eagle’s medium (DMEM; Hyclone, Logan, USA) containing 10% fetal bovine serum (FBS; Hyclone) and 1% of penicillin and streptomycin (Gibco, Invitrogen, Waltham, USA). IMR-90 cells were used as young cells in population doublings (PDL) between 15 and 25, and senescent fibroblasts were utilized in PDL 55–65 following additional culture time. Total cellular RNA was isolated using TRIzol reagent (Invitrogen, Waltham, USA).

Labeling and hybridization

Array hybridization and specimen labeling were carried out in accordance with the manufacturer’s instructions (Arraystar, Rockville, USA). Total RNA was digested with RNase R (Epicentre, Madison, USA), and the enriched circRNA was amplified and converted into fluorescent cRNA utilizing the random method (Arraystar Super RNA Labeling Kit; Arraystar). The RNeasy Mini Kit was then used to purify the labeled cRNAs (Qiagen, Hilden, Germany). Using a NanoDrop ND-1000, the labeled cRNAs (pmol Cy3/μg) were measured (Thermo Fisher Scientific, Waltham, USA), and 1 μg of cRNA was cleaved by adding 5 μL of a ×10 blocking agent and 1 μL of a ×25 fragmentation buffer. To dilute the labeled cRNA, 25 μL of ×2 hybridization buffer was added to the mixture, and it was incubated for 30 min at 60°C. Finally, space slides containing 50 μL of the hybridization solution were distributed and assembled on the microarray slide for the circRNA expression (Agilent Technologies, Santa Clara, USA). The slides were incubated for 17 h at 65°C in a mixed oven, and then the hybridized arrays were cleaned, fixed, and scanned using the Agilent Scanner G2505C (Agilent Technologies).

Arraystar human circRNA array analysis

The gathered array images were examined using Agilent Feature Extraction software (v. 11.0.1.1; Agilent Technologies). Then, utilizing the R software package (R Foundation for Statistical Computing, Vienna, Austria), quantile normalization and data processing were carried out (Bioconductor, Github, CRAN; https://www.bioconductor.org/). Through volcano map screening, the statistically significant differential expression of circRNAs between the 2 groups was determined, which was displayed as hierarchical clustering. Fold changes ≥2 and p-values <0.05 indicated significant differences in the circRNA expression.

Comprehensive analysis of the circRNAs-miRNAs-mRNAs networks

The software StarBase (v. 2.0; http://starbase.sysu.edu.cn) was used to anticipate the preferred miRNAs of selected circRNAs. The target miRNAs of the identified circRNAs were anticipated using Mireap, Miranda (v. 3.3a; https://cloud.oebiotech.com/task/detail/array_miranda_plot) and TargetScan (v. 7.0; http://www.targetscan.org). The circRNA-miRNA-mRNA regulation networks were analyzed using miRTarBase (v. 6.1; https://miRTarBase.cuhk.edu.cn), and the culminating correlations were clarified with Cytoscape (https://cytoscape.org/).

Gene Ontology and KEGG pathway analyses

We used the gene function classification system, GO, to determine the characteristics and functions of our genes of interest.27 In the GO database (http://www.geneontology.org), all source genes are mapped to GO terms, and the determination of whether a gene fits a term is calculated using an false discovery rate (FDR) threshold of 0.05. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the significantly enriched pathways in the source genes, as compared to the whole genome background.28 The calculation equation is identical to that used in GO analysis, and the cascades with FDR ≤0.05 were deemed as significant enrichment.

siRNA transfection and SA-β-galactosidase activity

The small interfering RNAs (siRNAs) employed for cell transfection were obtained from RiboBio (Guangzhou, China) with the following sequences: circRNA_0007113 siRNA (5’-CAA GUG UUG CCA ACC CAU CUG AUG GA-3’) and Ctrl siRNA (5’-AAU UCU CCG AAC GUG UCA CGU-3’). The siRNA was transfected with Lipofectamine 2000 (Invitrogen) at a final concentration of 100 nM. Aging-related senescence-associated (SA) β-galactosidase activity was validated using a kit purchased from Cell Signaling Technology (CST; Danvers, USA).

Human blood sample collection and real-time quantitative polymerase chain reaction analysis

Total blood specimens were obtained from 40 healthy individuals, aged 30–39 or 60–69 years (male, body mass index (BMI) = 20–26 kg/m2) who visited the hospital for routine health examinations. All participants gave their informed consent for inclusion in the study prior to participation. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Hospital and Medical College of Yangzhou University (approval No. YXYLL-2020-02)

TRIzol reagent was used to extract the total cellular RNA, which was then transcribed into cDNA with a Reverse Transcription Kit (Takara, Shiga, Japan). Real-time qualitative polymerase chain reaction (qPCR) was conducted using a kit following the manufacturer’s instructions (Takara Bio SYBR Green; Takara). The reaction parameters were as follows: 95°C for 30 s, then 35 amplification cycles (5 s at 95°C, 30 s at 60°C). All specimens were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the experiment was repeated 3 times. Finally, SDS v. 1.4 software (Applied Biosystems, Foster City, USA) was used to analyze the data based on the 2–ΔΔCt method. Origin v. 9.0 software (OriginLab, Northampton, USA) was utilized to analyze the histogram.

Protein extraction and western blotting

Radioimmunoprecipitation assay (RIPA) buffer (Beyotime Biotechnology, Shanghai, China) was used to lyse IMR90 cells, and protein was measured using a Bicinchoninic (BCA) protein assay kit (Bio-Rad, Hercules, USA). Total protein (35 μg) was isolated using 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membranes (MilliporeSigma, St. Louis, USA). The membranes were blocked with 5% skimmed milk in Tris-buffered saline with Tween (TBST) buffer, and then the primary anti-p53 and anti-p21 antibodies were introduced and incubated overnight at 4°C (Santa Cruz Biotechnology, Santa Cruz, USA). Membranes were washed thrice in TBST, and incubated with the secondary horseradish peroxidase (HRP)-conjugated antibodies (1:5,000 in TBST; Beijing Zhong-Shan Biotechnology, Beijing, China) for 1 h at room temperature. The protein was exposed using an improved chemiluminescence reagent (Millipore Sigma), and the reactive bands were analyzed for relative intensity using ImageJ software v. 1.46 (National Institutes of Health, Bethesda, USA).

Statistical analyses

All observations in this study were made in triplicate, and the results were analyzed using GraphPad Prism v. 8 software (GraphPad Software Inc., San Diego, USA). The one-sample nonparametric test was used to compare the difference between candidate circRNA and its corresponding control. The Shapiro–Wilk test and Bartlett test were used to determine the variables’ normality, whereas homogeneity and a t-test (if not specifically indicated) or Wilcoxon Mann–Whitney test were used to compare the differences to control samples. A value of p < 0.05 was considered statistically significant.

Results

Differential expression profile analysis of circRNA between young and senescent human embryonic lung fibroblasts

A total of 3,936 circRNAs were identified using the circRNA microarray and displayed as hierarchical clustering (Figure 1A) and box plot analysis (Figure 1B). Scatter (Figure 1C) and volcano plots (Figure 1D) were used to identify differences in circRNAs between young and senescent cells. Among them, as shown in Table 1, Table 2, 113 differentially expressed circular RNAs (circRNAs) were analyzed; 109 circRNAs were upregulated, and 4 circRNAs were downregulated, with p < 0.05 and |log2(fold change)| >1. More than 80% of the differentially expressed circRNAs belong to exonic circRNA, which is exclusively composed of exons.

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses

The mRNAs produced from the parent genes of 113 changed circRNAs were examined using GO and KEGG pathway analysis to hypothesize the pathological and physiological significance of circRNAs throughout cellular senescence. The main supplemented and meaningful GO terminologies and biological process (BP) were ‘‘establishment or maintenance of cell polarity’’, ‘‘regulation of translational initiation” and ‘‘ATPase activity’’. In terms of molecular function (MF), it was found that most of the circRNA-associated mRNAs were in “ATP binding” and “protein binding” states. As for cellular components (CC), the most enriched CC terms were ‘‘cytosol’’ and ‘‘cytoplasm’’ (Figure 2A). Gene-enriched KEGG cascade analysis demonstrated that these pathways may be linked with the progression of aging. Most of these circRNAs are target genes linked with Parkinson’s disease, p53 signaling pathway and RNA transport (Figure 2B).

Differentially expressed circRNAs’ evaluation with qPCR

Nine significantly upregulated and 4 significantly downregulated circRNAs were chosen for qPCR confirmation. Primers are shown in Table 3. We found that hsa_circRNA_0083335, hsa_circRNA_0068464, hsa_circRNA_0009361 and hsa_circ_0001303 expression levels were significantly elevated in senescent cells, while the hsa_circ_0007113 and hsa_circ_0092374 expression levels were significantly decreased, which was in line with the microarray results (Figure 3).

Cellular senescence was exacerbated after siRNA treatment of hsa_circ_0007113

Following the administration of siRNA to silence hsa_circ_0007113, the expression levels of p21 and p53 were significantly elevated (Figure 4AB). Moreover, the signal was significantly increased after β-gal staining, indicating that cell senescence was exacerbated after siRNA treatment against hsa_circ_0007113 (Figure 5A–C).

hsa_circ_0007113 could alleviate cellular senescence via miR-515-5p

CircRNAs can serve as “sponges” for miRNAs to control target gene expression. Therefore, we established a regulation network of circRNAs-microRNAs-mRNAs. The hsa_circ_0007113 is anticipated to bind with 275 miRNAs, thereby controlling a wide array of genes. It was found that hsa_circ_0007113 has a binding site for miR-515-5p, which is involved in the regulation of p53/p21 signaling pathway (Figure 6). Five miRNAs, including hsa-miR-515-5p, hsa_miR-1301-3p, hsa-miR-181c-5p, hsa-miR-22-5p, and hsa-miR-141-5p, were selected and were shown to target cellular processes including inflammation (IL17A, IL11RA, IL17AC), energy metabolism (ATP2B1, ATP7B, ATP12A), cell apoptosis (BCL2, BCL2L13, CASP9, CASP7, CASP10), cell senescence (SIRT2, GPR17, GPR135), cell cycle and division (CDK11A, CDK6), and zinc finger protein (ZNF784, ZNF655, ZNF589).

The expression of hsa_circ_0007113 decreases with aging

The relative expression of hsa_circ_0007113 was measured in 40 healthy individuals, 30–39 and 60–69 years old, and was shown to be higher in the 30–39-year-old group compared to the 60–69-year-old group (Figure 7).

Discussion

Age-linked diseases like osteoarthritis, atherosclerosis, cancer, Parkinson’s disease, Alzheimer’s disease, and type 2 diabetes are all impacted by cellular senescence.16, 17, 18, 19, 20, 21, 22, 29, 30 Therefore, understanding the regulatory mechanism of cellular senescence may enable interventions in these aging-related diseases. The main signaling pathways controlling cellular senescence from a mechanical perspective are P53-P21CIP1 and P16INK4A-Rb. Thus, it is thought that P53 and P16INK4A are crucial elements in the induction of cellular senescence.31

Circular RNAS are important molecules involved in many biological processes, play important roles in regulating many cellular functions, and are expected to be biomarkers or treatment targets for diseases. However, their role in cellular senescence and the mechanisms of how circRNAs regulate it have not been previously described.

Therefore, the present study focused on the examination of alterations in circRNA expression profiles in senescence using the Arraystar Human circRNA Array, showing they are altered during cellular senescence. There were 109 upregulated and 4 downregulated circRNAs, possibly playing important roles in senescence-related physiological processes. Most circRNAs related to aging showed a trend towards increased expression, and we speculate that this may be due to the tendency of circRNA to accumulate in aging tissues, which in turn leads to their upregulation. In the microarray results, the most upregulated and downregulated circRNA were hsa_circ_0052318 (fold = 5.78) and hsa_circ_00052730 (fold = –5.48), respectively. However, the differential expression of circRNA detected was not as obvious as it is in cancer. This may be because cancer is a pathological process and is affected by drug stimulation, while aging is an overall slower, chronic and progressive physiological process. As this study revealed differentially expressed circRNA in human embryonic lung fibroblasts, our results may offer a new avenue for studying the molecular mechanism underlying senescence, and novel opportunities for senescence medication through the modulation of circRNAs.

Among the differentially expressed circRNA, circRNA_0007113, a downregulated circRNA, was selected, and the pathological phenotype associated with cellular senescence was investigated. The parent gene of circRNA_0007113 is ubiquitin ligase E3 (HERC4). hsa_circ_0007113 was obtained from exons 19 to 23 of the HERC4 gene. E3 ubiquitin ligase, a novel protein only discovered in recent years, plays a vital role in the ubiquitin-protease system due to its substrate recognition specificity and is also inextricably linked to cellular aging.32 Currently, there are limited data on its related functions, such as participating in lung, cervical, breast and liver cancer, and participating in the incidence and development of other tumors as well,33 but its role in the aging process has not been reported. To begin preliminary investigations on the potential effect of circRNA_0007113 in cellular senescence, loss-of-function experiments were conducted using siRNA silencing. The results demonstrated that reducing circRNA_0007113 expression significantly increased the p53 and p21 protein expression levels, which are well known to trigger cell senescence.34 These results were also confirmed with β-gal staining.35 The role of circRNA_0007113 in cellular senescence has not been reported yet, and no other studies are available for comparison. Still, circRNAs have been shown to be involved in all cellular processes, including senescence.23, 24, 25, 26 The present study also suggests that hsa_circRNA_0007113 is involved in total body senescence, as hsa_circRNA_0007113 levels were lower in older individuals than in younger participants. Therefore, additional studies are necessary to confirm and refine the potential mechanisms.

Competing endogenous RNAs analyses showed that circRNAs modulate miRNA target gene expression. Therefore, a bioinformatics analysis was performed, which suggested that hsa_circ_0007113 has a binding site for miR-515-5p. The miR-515-5p was also reported to be involved in the p53/p21 pathway,36, 37 supporting the association of hsa_circ_0007113 with cell senescence. Indeed, the levels of p53 and p21 were increased in senescent cells, and studies showed that p53 expression is necessary for the maintenance of senescence.38, 39, 40, 41, 42 However, it is noteworthy that decreasing p53 and p21 expression in senescent cells leads to the restoration of the cell cycle and immortalization.38, 39, 40, 41, 42 Therefore, silencing hsa_circ_0007113 would increase miR-515-5p levels, leading to higher levels of p53 and p21, supporting the hypothesis that a reduction in hsa_circ_0007113 is a hallmark of cellular senescence. Notably, KEGG pathway analysis showed p53 signaling to be enriched under these circumstances. Thus, hsa_circ_0007113 could bind miR-515-5p, modulating the p53/p21 pathway and regulating cell senescence. However, hsa_circ_0007113 is only 1 of many factors that regulate cellular senescence. In this study, the new function of one circRNA derived from the HERC4 gene was elaborated, the function was verified in human lung fibroblasts, and its relationship with aging was confirmed.

Limitations

The specific molecular mechanism requires further clarification. For example, over-expression of hsa_circ_0007113 both in vitro and in vivo would also show the function.

Conclusions

This study showed that altered circRNA expression patterns are present in cellular senescence, which may play important roles in senescence-related physiological processes. These findings offer a fresh approach to understanding the molecular mechanism underlying senescence, as well as a new way to potentially cure senescence by altering circRNAs. Additional investigations are necessary to recognize circRNA roles in cellular senescence.

Tables


Table 1. The upregulated circRNAs in this study

circRNA

Alias

circRNA type

Gene symbol

Fold change

p-value

hsa_circRNA_102602

hsa_circ_0052318

exonic

ZNF418

5.87

0.029

hsa_circRNA_100748

hsa_circ_0020926

exonic

STIM1

4.49

0.023

hsa_circRNA_001405

hsa_circ_0001167

intronic

PREX1

4.48

0.042

hsa_circRNA_103517

hsa_circ_0067997

exonic

FNDC3B

4.23

0.007

hsa_circRNA_001350

hsa_circ_0000253

intronic

BLNK

4.13

0.019

hsa_circRNA_100358

hsa_circ_0000139

exonic

GON4L

4.12

0.035

hsa_circRNA_000942

hsa_circ_0001303

antisense

UBA7

4.03

0.041

hsa_circRNA_000454

hsa_circ_0001703

intronic

SEPT7P2

3.85

0.043

hsa_circRNA_000618

hsa_circ_0000708

intronic

FAM65A

3.74

0.010

hsa_circRNA_104600

hsa_circ_0005927

exonic

VDAC3

3.70

0.021

hsa_circRNA_100057

hsa_circ_0008275

exonic

VPS13D

3.69

0.034

hsa_circRNA_103542

hsa_circ_0068464

exonic

EIF4A2

3.68

0.019

hsa_circRNA_103178

hsa_circ_0062577

exonic

CABIN1

3.67

0.025

hsa_circRNA_100018

hsa_circ_0009361

exonic

GNB1

3.60

0.031

hsa_circRNA_100063

hsa_circ_0010039

exonic

CASP9

3.58

0.010

hsa_circRNA_101295

hsa_circ_0030777

exonic

PCCA

3.44

0.009

hsa_circRNA_001747

hsa_circ_0000246

exonic

MCU

3.41

0.033

hsa_circRNA_100147

hsa_circ_0004240

exonic

EIF3I

3.41

0.018

hsa_circRNA_101643

hsa_circ_0036750

exonic

C15orf38-AP3S2

3.34

0.019

hsa_circRNA_102978

hsa_circ_0004525

exonic

RBCK1

3.29

0.029

hsa_circRNA_103665

hsa_circ_0070033

exonic

NUP54

3.29

0.005

hsa_circRNA_001547

hsa_circ_0001874

intronic

BICD2

3.28

0.030

hsa_circRNA_103410

hsa_circ_0003266

exonic

LRIG1

3.23

0.046

hsa_circRNA_102333

hsa_circ_0047303

exonic

ZNF521

3.22

0.032

hsa_circRNA_104693

hsa_circ_0003691

exonic

ASAP1

3.21

0.004

hsa_circRNA_104126

hsa_circ_0076798

exonic

GCLC

3.19

0.023

hsa_circRNA_101491

hsa_circ_0034762

exonic

MAPKBP1

3.19

0.028

hsa_circRNA_000593

hsa_circ_0000550

antisense

SLC10A1

3.18

0.014

hsa_circRNA_100395

hsa_circ_0015278

exonic

KLHL20

3.17

0.037

hsa_circRNA_104323

hsa_circ_0079534

exonic

MACC1

3.17

0.009

hsa_circRNA_104551

hsa_circ_0083294

exonic

TNKS

3.14

0.010

hsa_circRNA_101524

hsa_circ_0035360

exonic

UNC13C

3.13

0.040

hsa_circRNA_100802

hsa_circ_0009018

exonic

EXT2

3.13

0.030

hsa_circRNA_001026

hsa_circ_0000141

intronic

SMG5

3.09

0.009

hsa_circRNA_104044

hsa_circ_0075447

exonic

GMDS

3.04

0.010

hsa_circRNA_101037

hsa_circ_0025767

exonic

TMTC1

3.04

0.013

hsa_circRNA_104553

hsa_circ_0083335

exonic

MTMR9

3.00

0.004

hsa_circRNA_001255

hsa_circ_0000630

intronic

BBS4

2.98

0.010

hsa_circRNA_102979

hsa_circ_0059151

exonic

RBCK1

2.97

0.027

hsa_circRNA_103863

hsa_circ_0001495

exonic

CCNB1

2.96

0.016

hsa_circRNA_102728

hsa_circ_0006110

exonic

USP34

2.96

0.001

hsa_circRNA_100244

hsa_circ_0000075

exonic

FGGY

2.95

0.045

hsa_circRNA_101591

hsa_circ_0036282

exonic

ARID3B

2.95

0.009

hsa_circRNA_000578

hsa_circ_0000487

intronic

DLEU2

2.95

0.009

hsa_circRNA_100749

hsa_circ_0020927

exonic

STIM1

2.92

0.010

hsa_circRNA_000250

hsa_circ_0000848

intronic

SMAD7

2.89

0.004

hsa_circRNA_100921

hsa_circ_0023920

exonic

PICALM

2.89

0.011

hsa_circRNA_100850

hsa_circ_0006857

exonic

PACS1

2.88

0.015

hsa_circRNA_104803

hsa_circ_0087354

exonic

UBQLN1

2.87

0.006

hsa_circRNA_101956

hsa_circ_0041551

exonic

ANKFY1

2.85

0.032

hsa_circRNA_101742

hsa_circ_0004683

exonic

C16orf62

2.85

0.011

hsa_circRNA_001653

hsa_circ_0001568

intronic

DUSP22

2.79

0.034

hsa_circRNA_001503

hsa_circ_0001191

intronic

DYRK1A

2.79

0.018

hsa_circRNA_100384

hsa_circ_0002093

exonic

SFT2D2

2.78

0.011

hsa_circRNA_000921

hsa_circ_0001120

intronic

SNED1

2.77

0.045

hsa_circRNA_100752

hsa_circ_0020976

exonic

OR51B5

2.74

0.009

hsa_circRNA_101958

hsa_circ_0041555

exonic

UBE2G1

2.72

0.003

hsa_circRNA_104426

hsa_circ_0081188

exonic

SLC25A13

2.68

0.037

hsa_circRNA_103278

hsa_circ_0001265

exonic

MTMR14

2.65

0.008

hsa_circRNA_102247

hsa_circ_0046462

exonic

TBCD

2.62

0.011

hsa_circRNA_104780

hsa_circ_0001861

exonic

GRHPR

2.58

0.008

hsa_circRNA_101401

hsa_circ_0032641

exonic

MLH3

2.56

0.010

hsa_circRNA_102246

hsa_circ_0046449

exonic

TBCD

2.54

0.042

hsa_circRNA_104401

hsa_circ_0005513

exonic

GTF2I

2.53

0.007

hsa_circRNA_000644

hsa_circ_0000861

antisense

XLOC_012735

2.50

0.015

hsa_circRNA_000274

hsa_circ_0000919

intronic

ATP13A1

2.49

0.015

hsa_circRNA_102851

hsa_circ_0008032

exonic

HAT1

2.46

0.005

hsa_circRNA_001587

hsa_circ_0000979

intronic

XLOC_001374

2.45

0.007

hsa_circRNA_101759

hsa_circ_0038608

exonic

EARS2

2.45

0.013

hsa_circRNA_104948

hsa_circ_0001897

exonic

POMT1

2.45

0.031

hsa_circRNA_103140

hsa_circ_0061891

exonic

PDXK

2.43

0.003

hsa_circRNA_101746

hsa_circ_0038349

exonic

C16orf62

2.40

0.009

hsa_circRNA_000042

hsa_circ_0000036

intronic

THEMIS2

2.40

0.004

hsa_circRNA_100442

hsa_circ_0002274

exonic

LPGAT1

2.39

0.004

hsa_circRNA_000422

hsa_circ_0001545

intragenic

TCOF1

2.39

0.020

hsa_circRNA_000679

hsa_circ_0001248

intronic

TTC38

2.38

0.045

hsa_circRNA_100100

hsa_circ_0010931

exonic

TMEM50A

2.34

0.028

hsa_circRNA_100588

hsa_circ_0018293

exonic

ANXA8L2

2.34

0.014

hsa_circRNA_101635

hsa_circ_0036666

exonic

NTRK3

2.32

0.006

hsa_circRNA_104135

hsa_circ_0007874

exonic

MTO1

2.31

0.002

hsa_circRNA_102251

hsa_circ_0002225

exonic

TBCD

2.30

0.022

hsa_circRNA_104367

hsa_circ_0080170

exonic

TNS3

2.25

0.038

hsa_circRNA_001800

hsa_circ_0001033

intronic

TTC31

2.23

0.002

hsa_circRNA_104694

hsa_circ_0007934

exonic

ZFAT

2.22

0.008

hsa_circRNA_104816

hsa_circ_0087493

exonic

IARS

2.19

0.003

hsa_circRNA_102476

hsa_circ_0007396

exonic

MYO9B

2.18

0.024

hsa_circRNA_000926

hsa_circ_0001022

intragenic

ACTR2

2.16

0.006

hsa_circRNA_104744

hsa_circ_0002606

exonic

MLLT3

2.16

0.033

hsa_circRNA_001380

hsa_circ_0000540

intragenic

FBXO34

2.15

0.002

hsa_circRNA_000082

hsa_circ_0000189

intragenic

NVL

2.15

0.020

hsa_circRNA_101070

hsa_circ_0026512

exonic

EIF4B

2.15

0.033

hsa_circRNA_100699

hsa_circ_0020250

exonic

ATE1

2.14

0.006

hsa_circRNA_100604

hsa_circ_0009172

exonic

DNA2

2.14

0.006

hsa_circRNA_101248

hsa_circ_0029976

exonic

NBEA

2.12

0.022

hsa_circRNA_100981

hsa_circ_0024737

exonic

VWA5A

2.11

0.001

hsa_circRNA_100999

hsa_circ_0025006

exonic

ADIPOR2

2.11

0.005

hsa_circRNA_000046

hsa_circ_0000059

intronic

CAP1

2.10

0.002

hsa_circRNA_102575

hsa_circ_0051527

exonic

EML2

2.10

0.001

hsa_circRNA_102509

hsa_circ_0006446

exonic

LSM14A

2.07

0.003

hsa_circRNA_102551

hsa_circ_0003859

exonic

LTBP4

2.07

0.011

hsa_circRNA_103009

hsa_circ_0003853

exonic

NAPB

2.06

0.008

hsa_circRNA_101743

hsa_circ_0006797

exonic

C16orf62

2.05

0.002

hsa_circRNA_103232

hsa_circ_0002877

exonic

MKL1

2.05

0.000

hsa_circRNA_102074

hsa_circ_0043815

exonic

STAT3

2.04

0.016

hsa_circRNA_000526

hsa_circ_0000248

intronic

ADK

2.03

0.022

hsa_circRNA_103593

hsa_circ_0069031

exonic

TMEM128

2.03

0.007

hsa_circRNA_001104

hsa_circ_0001157

antisense

DHX35

2.01

0.041

hsa_circRNA_102813

hsa_circ_0007052

exonic

CLASP1

2.00

0.008

Table 2. The downregulated circular RNAs (circRNAs) in this study

circRNA

Alias

circRNA type

Gene symbol

Fold change

p-value

hsa_circRNA_104700

hsa_circ_0005273

exonic

PTK2

5.48

0.021

hsa_circRNA_104147

hsa_circ_0004905

exonic

IBTK

2.43

0.032

hsa_circRNA_100601

hsa_circ_0007113

exonic

HERC4

2.18

0.004

hsa_circRNA_400011

hsa_circ_0092374

intronic

GADD45A

2.03

0.004

Table 3. Primers used in this study

Name

Forward (5’-3’)

Reverse (5’-3’)

hsa_circ_0007113

TGGGAAGCATTGTCACTGAG

CAAGCATACACCTGGCCTTT

hsa_circ_0009361

GCCGAGCAACTTAAGAACCA

AGTGCTCTTCAATGCCACCT

hsa_circ_0092374

AGCTCCCACGGACTGAAAG

TTAGCTTCCTCCCCTGCAA

hsa_circ_0004905

GTTTTGACCTGCTCCGTTTC

AAGAGACGGGGTCTCGCTAT

hsa_circ_0006110

ATGGTTCACTGTTACTCTTGAGG

TGCTGCCATTGGAGTCCTTA

hsa_circ_0083335

TTTGTTGTGATGGTGGCTTG

GACGGATGAACTCCTGTCCT

hsa_circ_0001303

AAAATAACTGGCAAATATATCATTGAG

AGAAGCCCTGCCCTTCTC

hsa_circ_0003691

GCTGCTTAGACGCTGGATTT

AGAAGCCCTGCCCTTCTC

hsa_circ_0005927

TCCTCTCCAAAATGCCAGAG

ACTCTGCTGCTCGCTGCTAC

hsa_circ_0068464

TCATGTTCATGCCCTGATTT

ACCAGAGTCTCCCCGAATG

hsa_circ_0001703

GCTGGGGTCTTGCTATCTGA

TGCCACTTGTGTTACCTTGG

hsa_circ_0005273

TGAGAGAACTTACCATAGAATTTAGCA

AGTCGCTGTGCCATTTGTTT

hsa_circ_0004905

CACAACCTCAAACCCGTTCT

TCAAGAGGTTGTTGCACAGG

P53

CCCCAGCCAAAGAAGAAAC

AACATCTCGAAGCGCTCAC

P21

GGGATGTCCGTCAGAACCCA

AAGTTCCATCGCTCACGGG

18SRNA

GAPDH

CGAACGTCTGCCCTATCAACTT

GAGTCCACTGGCGTCTTCAC

ACCCGTGGTCACCATGGTA

ATCTTGAGGCTGTTGTCATACTTCT

Figures


Fig. 1. Chip analysis of the circular RNAs in proliferating (Y_15, Y_17, Y_18) and senescent (SEN_60, SEN_61, SEN_76) IMR-90 cells. A. Hierarchical clustering result analysis; B. Box plot result analysis. The boxplot was generated using R. The outliers are represented as red dots beyond the upper and lower whisker boundaries. They are defined as values > (Q3 + 1.5*IQR) or < (Q1-1.5*IQR) (IQR – interquartile range); C. Scatter plot result analysis; D. Volcano plot analysis. Total 113 differentially expressed circRNAs (difference >2.0 times, *p < 0.05), including 109 upregulated and 4 downregulated. More than 80% were of the exon type
Fig. 2. Bioinformatics analyses of 113 differentially expressed circular RNAs (circRNAs). A. Gene Ontology (GO); B. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Fig. 3. Validation of 9 upregulated and 4 downregulated circular RNAs (circRNAs) using real-time qualitative polymerase chain reaction (qPCR). The Wilcoxon Mann–Whitney test was employed to analyze the differences between each circRNA group and the control group. The hsa_circ_0083335, hsa_circ_0006110, hsa_circ_0001303, hsa_circ_0003691, hsa_circ_0005927, hsa_circ_0068464, hsa_circ_0001703, hsa_circ_0009361, hsa_circ_0001703, hsa_circ_0009361, hsa_circ_0007113, hsa_circ_0005273, hsa_circ_0004905, and hsa_circ_0092374 vs control: Z = –2.087, p = 0.037. The test assumptions are as follows: H0: The relative expression levels of circRNA X exhibit a similar overall distribution to that of the control group; H1: The relative expression levels of circRNA X differ from those of the control group, α = 0.05.
Fig. 4. Silencing of hsa_circ_0007113 increases the expression of p53 and p21. A. Protein expression of p53 and p21 was identified with western blotting. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference; B. Quantification of the western blot bands. The data were expressed with median (3 distinct repetitions, t-test, p21: p = 0.013; p53:p = 0.037, df = 4,* denotes p < 0.05)
Fig. 5. After silencing of hsa_circ_0007113, SA-β-gal staining showed that the SA-β-gal expression of senescent cells was increased (×100). A. Control siRNA; B. has_circ_0007113 siRNA; C. Quantification of the positive cells. The data were expressed as mean with 95% confidence interval (95% CI) (3 distinct repetitions, t-test, p = 0.029, df = 4, *denotes p < 0.05)
Fig. 6. hsa_circ_0007113 alleviates cellular senescence state via the regulation of hsa_miR-515-5p. A. hsa_circ_0007113 has a binding site for miR-515-5p; B. The network of selected target genes of hsa-miR-515-5p, hsa_miR-1301-3p, hsa-miR-181c-5p, hsa-miR-22-5p, and hsa-miR141-5p
Fig. 7. Comparison of whole blood hsa_circ_0007113 levels in healthy individuals of 30–39 compared to 60–69 years. The hsa_circ_0007113 levels were determined using real-time qualitative polymerase chain reaction (qPCR). The data were expressed as mean with 95% confidence interval (95% CI) (40 distinct repetitions, t-test, p = 0.036, df = 38, *denotes p < 0.05)

References (42)

  1. Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK. Environmental stress, ageing and glial cell senescence: A novel mechanistic link to Parkinson’s disease? J Intern Med. 2013;273(5):429–436. doi:10.1111/joim.12029
  2. Campisi J, Robert L. Cell senescence: Role in aging and age-related diseases. Interdiscip Top Gerontol Geriatr. 2014;39:45–61. doi:10.1159/000358899
  3. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat Med. 2015;21(12):1424–1435. doi:10.1038/nm.4000
  4. Galbiati A, Beauséjour C, d’Adda di Fagagna F. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell. 2017;16(2):422–427. doi:10.1111/acel.12573
  5. Victorelli S, Passos JF. Telomeres and cell senescence: Size matters not. EBioMedicine. 2017;21:14–20. doi:10.1016/j.ebiom.2017.03.027
  6. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014;15(11):1139–1153. doi:10.15252/embr.201439245
  7. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005;37(5):961–976. doi:10.1016/j.biocel.2004.10.013
  8. Hombach S, Kretz M. Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17. doi:10.1007/978-3-319-42059-2_1
  9. Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA. 2015;6(6):615–629. doi:10.1002/wrna.1297
  10. Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-associated microRNAs. Int Rev Cell Mol Biol. 2017;334:177–205. doi:10.1016/bs.ircmb.2017.03.008
  11. Maoz R, Garfinkel BP, Soreq H. Alzheimer’s disease and ncRNAs. Adv Exp Med Biol. 2017;978:337–361. doi:10.1007/978-3-319-53889-1_18
  12. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
  13. Chen S, Huang V, Xu X, et al. Widespread and functional RNA circularization in localized prostate cancer. Cell. 2019;176(4):831–843. doi:10.1016/j.cell.2019.01.025
  14. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–211. doi:10.1038/nrm.2015.32
  15. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: An emerging key player in RNA world. Brief Bioinformatics. 2016;18(4):547–557. doi:10.1093/bib/bbw045
  16. Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA. 2017;8(2). doi:10.1002/wrna.1386
  17. Meng S, Zhou H, Feng Z, et al. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94. doi:10.1186/s12943-017-0663-2
  18. Su M, Xiao Y, Ma J, et al. Circular RNAs in cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 2019;18(1):90. doi:10.1186/s12943-019-1002-6
  19. Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38(18):1402–1412. doi:10.1093/eurheartj/ehw001
  20. Li J, Song Y, Wang J, Huang J. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer detection. Am J Transl Res. 2020;12(11):7395–7403. PMID:33312376. PMCID:PMC7724351.
  21. Li S, Hu W, Deng F, et al. Identification of circular RNA hsa_circ_0001599 as a novel biomarker for large-artery atherosclerotic stroke. DNA Cell Biol. 2021;40(3):457–468. doi:10.1089/dna.2020.5662
  22. Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2021;12(12):911–946. doi:10.1007/s13238-020-00799-3
  23. Cai H, Li Y, Niringiyumukiza JD, Su P, Xiang W. Circular RNA involvement in aging: An emerging player with great potential. Mech Ageing Dev. 2019;178:16–24. doi:10.1016/j.mad.2018.11.002
  24. Panda AC, Grammatikakis I, Kim KM, et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 2017;45(7):4021–4035. doi:10.1093/nar/gkw1201
  25. Yu AQ, Wang ZX, Wu W, Chen KY, Yan SR, Mao ZB. Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2. Aging (Albany NY). 2019;11(22):10220–10241. doi:10.18632/aging.102449
  26. Si C, Wang J, Ma W, et al. Circular RNA expression profile in human fibroblast premature senescence after repeated ultraviolet B irradiations revealed by microarray. J Cell Physiol. 2019;234(10):18156–18168. doi:10.1002/jcp.28449
  27. Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/75556
  28. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  29. McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16(2):210–218. doi:10.1111/acel.12562
  30. Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 2018;22(4):930–940. doi:10.1016/j.celrep.2017.12.092
  31. Aravinthan A. Cellular senescence: A hitchhiker’s guide. Hum Cell. 2015;28(2):51–64. doi:10.1007/s13577-015-0110-x
  32. George AJ, Hoffiz YC, Charles AJ, Zhu Y, Mabb AM. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front Genet. 2018;9:29. doi:10.3389/fgene.2018.00029
  33. Humphreys LM, Smith P, Chen Z, Fouad S, D’Angiolella V. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ. 2021;28(2):522–537. doi:10.1038/s41418-020-00696-6
  34. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10(3):420. doi:10.3390/biom10030420
  35. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–1806. doi:10.1038/nprot.2009.191
  36. Pardo OE, Castellano L, Munro CE, et al. miR‐515‐5p controls cancer cell migration through MARK4 regulation. EMBO Rep. 2016;17(4):570–584. doi:10.15252/embr.201540970
  37. Zhang M, Muralimanoharan S, Wortman AC, Mendelson CR. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc Natl Acad Sci U S A. 2016;113(45):E7069–E7076. doi:10.1073/pnas.1607849113
  38. Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92(9):1049–1055. doi:10.1161/01.RES.0000070067.64040.7C
  39. Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 2003;22(16):4212–4222. doi:10.1093/emboj/cdg417
  40. Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV. Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A. 2010;107(21):9660–9664. doi:10.1073/pnas.1002298107
  41. Kumar M, Lu Z, Takwi AAL, et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843–853. doi:10.1038/onc.2010.457
  42. Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: The critical roles of p53. Oncogene. 2013;32(43):5129–5143. doi:10.1038/onc.2012.640