Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/161165
Publication type: review
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Lewandowski D, Szewczyk A, Radzka J, et al. The natural origins of cytostatic compounds used in rhabdomyosarcoma therapy [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/161165
The natural origins of cytostatic compounds used in rhabdomyosarcoma therapy
1 Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Poland
2 Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and represents a high-grade neoplasm of skeletal myoblast-like cells. About 40% of all registered soft tissue tumors are RMSs. This paper describes our current understanding of the RMS subtypes (alveolar (ARMS), embryonic (ERMS), pleomorphic (PRMS), and spindle cell/sclerosing (s/scRMS)), diagnostic methods, molecular bases, and characteristics. We also present the currently used treatment methods and the potential use of natural substances in the treatment of this type of cancer. Natural cytotoxic substances are compounds that have been the subject of numerous studies and discussions in recent years. Since anti-cancer therapies are often limited by a low therapeutic index and cancer resistance to pharmacotherapy, it is very important to search for new, effective compounds. Additionally, compounds of a natural origin are usually readily available and have a reduced cytotoxicity. Thus, the undiscovered potential of natural anti-cancer compounds makes this field of research a very important area. The introduction of model species into research examining the use of natural cytostatic therapies for RMS will allow for further assessment of the effects of these compounds on cancerous and healthy tissues.
Key words
rhabdomyosarcoma, natural compounds, anti-cancer therapy, muscle cells
Graphical abstract

References (149)
- Arndt CAS, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341(5):342–352. doi:10.1056/NEJM199907293410507
- Ries L, Smith M, Gurney J, et al., eds. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. Bethesda, USA: National Cancer Institute, SEER Program. NIH Pub. No. 99-4649. https://seer.cancer.gov/archive/publications/childhood/childhood-monograph.pdf. Accessed November 10, 2022.
- Skubitz KM, D’Adamo DR. Sarcoma. Mayo Clin Proc. 2007;82(11):1409–1432. doi:10.4065/82.11.1409
- Hoang NT, Acevedo LA, Mann MJ, Tolani B. A review of soft-tissue sarcomas: Translation of biological advances into treatment measures. Cancer Manag Res. 2018;10:1089–1114. doi:10.2147/CMAR.S159641
- Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer. 2009;115(18):4218–4226. doi:10.1002/cncr.24465
- Dasgupta R, Fuchs J, Rodeberg D. Rhabdomyosarcoma. Semin Pediatr Surg. 2016;25(5):276–283. doi:10.1053/j.sempedsurg.2016.09.011
- Ingley KM, Cohen-Gogo S, Gupta AA. Systemic therapy in pediatric-type soft-tissue sarcoma. Curr Oncol. 2020;27(11):6–16. doi:10.3747/co.27.5481
- Hustu HO, Pinkei D, Pratt CB. Treatment of clinically localized Ewing’s sarcoma with radiotherapy and combination chemotherapy. Cancer. 1972;30(6):1522–1527. doi:10.1002/1097-0142(197212)30:6<1522::AID-CNCR2820300617>3.0.CO;2-J
- Skapek SX, Ferrari A, Gupta AA, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5(1):1. doi:10.1038/s41572-018-0051-2
- Martin-Giacalone BA, Weinstein PA, Plon SE, Lupo PJ. Pediatric rhabdomyosarcoma: Epidemiology and genetic susceptibility. J Clin Med. 2021;10(9):2028. doi:10.3390/jcm10092028
- Barr FG, Qualman SJ, Macris MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62(16):4704–4710. PMID:12183429.
- Shern JF, Selfe J, Izquierdo E, et al. Genomic classification and clinical outcome in rhabdomyosarcoma: A report from an international consortium. J Clin Oncol. 2021;39(26):2859–2871. doi:10.1200/JCO.20.03060
- Panda SP, Chinnaswamy G, Vora T, et al. Diagnosis and management of rhabdomyosarcoma in children and adolescents: ICMR Consensus Document. Indian J Pediatr. 2017;84(5):393–402. doi:10.1007/s12098-017-2315-3
- Dias P, Chen B, Dilday B, et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol. 2000;156(2):399–408. doi:10.1016/S0002-9440(10)64743-8
- Ilanthodi S, Pallipady A, Jayaprakash K, Monteiro F. Secondary cardiac pleomorphic rhabdomyosarcoma: A case report and review of literature. J Clin Diagn Res. 2011;5(2):364–366. https://www.jcdr.net/articles/pdf/1260/1648_2024_9_4_11.pdf. Accessed November 10, 2022.
- Yin J, Liu Z, Yang K. Pleomorphic rhabdomyosarcoma of the liver with a hepatic cyst in an adult: Case report and literature review. Medicine (Baltimore). 2018;97(29):e11335. doi:10.1097/MD.0000000000011335
- Shirafkan A, Boroumand N, Komak S, Duchini A, Cicalese L. Pancreatic pleomorphic rhabdomyosarcoma. Int J Sur Case Rep. 2015;13:33–36. doi:10.1016/j.ijscr.2015.05.029
- Alaggio R, Zhang L, Sung YS, et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: Identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 2016;40(2):224–235. doi:10.1097/PAS.0000000000000538
- Smith MH, Atherton D, Reith JD, Islam NM, Bhattacharyya I, Cohen DM. Rhabdomyosarcoma, spindle cell/sclerosing variant: A clinical and histopathological examination of this rare variant with three new cases from the oral cavity. Head Neck Pathol. 2017;11(4):494–500. doi:10.1007/s12105-017-0818-x
- Rudzinski ER, Anderson JR, Hawkins DS, Skapek SX, Parham DM, Teot LA. The World Health Organization Classification of Skeletal Muscle Tumors in Pediatric Rhabdomyosarcoma: A report from the Children’s Oncology Group. Arch Pathol Lab Med. 2015;139(10):1281–1287. doi:10.5858/arpa.2014-0475-OA
- Williams LA, Richardson M, Kehm RD, et al. The association between sex and most childhood cancers is not mediated by birthweight. Cancer Epidemiol. 2018;57:7–12. doi:10.1016/j.canep.2018.09.002
- Dorak MT, Karpuzoglu E. Gender differences in cancer susceptibility: An inadequately addressed issue. Front Genet. 2012;3:268. doi:10.3389/fgene.2012.00268
- van Erp AEM, Versleijen-Jonkers YMH, van der Graaf WTA, Fleuren EDG. Targeted therapy-based combination treatment in rhabdomyosarcoma. Mol Cancer Ther. 2018;17(7):1365–1380. doi:10.1158/1535-7163.MCT-17-1131
- Schlessinger J. Receptor tyrosine kinases: Legacy of the first two decades. Cold Spring Harb Perspect Biol. 2014;6(3):a008912. doi:10.1101/cshperspect.a008912
- Temin HM. Studies on carcinogenesis by avian sarcoma viruses. V. Requirement for new DNA synthesis and for cell division. J Cell Physiol. 1967;69(1):53–63. doi:10.1002/jcp.1040690108
- El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Helman LJ. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1990;1(7):325–331. PMID:2177632.
- Wang Q, Wu Y, Aerts T, Slegers H, Clauwaert J. Expression of IGF-I and IGF-II receptors in rat C6 glioma cells as a function of the growth phase. Cell Physiol Biochem. 1998;8(6):304–313. doi:10.1159/000016292
- Blandford MC, Barr FG, Lynch JC, Randall RL, Qualman SJ, Keller C. Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: A report from the children’s oncology group. Pediatr Blood Cancer. 2006;46(3):329–338. doi:10.1002/pbc.20466
- Makawita S, Ho M, Durbin AD, Thorner PS, Malkin D, Somers GR. Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol. 2009;12(2):127–135. doi:10.2350/08-05-0477.1
- Rikhof B, de Jong S, Suurmeijer AJ, Meijer C, van der Graaf WT. The insulin-like growth factor system and sarcomas. J Pathol. 2009;217(4):469–482. doi:10.1002/path.2499
- Martins AS, Olmos D, Missiaglia E, Shipley J. Targeting the insulin-like growth factor pathway in rhabdomyosarcomas: Rationale and future perspectives. Sarcoma. 2011;2011:209736. doi:10.1155/2011/209736
- Fuss E. Lignans in plant cell and organ cultures: An overview. Phytochem Rev. 2003;2(3):307–320. doi:10.1023/B:PHYT.0000045500.56476.f5
- Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor: Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene. 2004;23(47):7854–7862. doi:10.1038/sj.onc.1208065
- Tarnowski M, Tkacz M, Zgutka K, Bujak J, Kopytko P, Pawlik A. Picropodophyllin (PPP) is a potent rhabdomyosarcoma growth inhibitor both in vitro and in vivo. BMC Cancer. 2017;17(1):532. doi:10.1186/s12885-017-3495-y
- Bagatell R, Norris R, Ingle AM, et al. Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: A children’s oncology group study. Pediatr Blood Cancer. 2014;61(5):833–839. doi:10.1002/pbc.24874
- van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit Rev Oncol Hematol. 2017;114:114–130. doi:10.1016/j.critrevonc.2017.04.004
- Morgenstern DA, Rees H, Sebire NJ, Shipley J, Anderson J. Rhabdomyosarcoma subtyping by immunohistochemical assessment of myogenin: Tissue array study and review of the literature. Pathol Oncol Res. 2008;14(3):233–238. doi:10.1007/s12253-008-9012-5
- Ramadan F, Fahs A, Ghayad SE, Saab R. Signaling pathways in rhabdomyosarcoma invasion and metastasis. Cancer Metastasis Rev. 2020;39(1):287–301. doi:10.1007/s10555-020-09860-3
- Anderson JL, Park A, Akiyama R, Tap WD, Denny CT, Federman N. Evaluation of in vitro activity of the class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. PLoS One. 2015;10(9):e0133610. doi:10.1371/journal.pone.0133610
- Guenther MK, Graab U, Fulda S. Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Lett. 2013;337(2):200–209. doi:10.1016/j.canlet.2013.05.010
- Renshaw J, Taylor KR, Bishop R, et al. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res. 2013;19(21):5940–5951. doi:10.1158/1078-0432.CCR-13-0850
- Almazán-Moga A, Zarzosa P, Molist C, et al. Ligand-dependent Hedgehog pathway activation in rhabdomyosarcoma: The oncogenic role of the ligands. Br J Cancer. 2017;117(9):1314–1325. doi:10.1038/bjc.2017.305
- Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 2001;15(23):3059–3087. doi:10.1101/gad.938601
- Teglund S, Toftgård R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta Rev Cancer. 2010;1805(2):181–208. doi:10.1016/j.bbcan.2010.01.003
- Zibat A, Missiaglia E, Rosenberger A, et al. Activation of the Hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene. 2010;29(48):6323–6330. doi:10.1038/onc.2010.368
- Badagabettu S, Shetty P, D’Souza M. A unique variation of azygos system of veins. J Cardiovasc Echography. 2016;26(2):61–64. doi:10.4103/2211-4122.183761
- Crist W, Gehan EA, Ragab AH, et al. The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol. 1995;13(3):610–630. doi:10.1200/JCO.1995.13.3.610
- Srivastava RK, Kaylani SZ, Edrees N, et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget. 2014;5(23):12151–12165. doi:10.18632/oncotarget.2569
- Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8(7):547–566. doi:10.1038/nrd2907
- Francis AM, Alexander A, Liu Y, et al. CDK4/6 inhibitors sensitize Rb-positive sarcoma cells to Wee1 kinase inhibition through reversible cell-cycle arrest. Mol Cancer Ther. 2017;16(9):1751–1764. doi:10.1158/1535-7163.MCT-17-0040
- Montoya‐Cerrillo DM, Diaz‐Perez JA, Velez‐Torres JM, Montgomery EA, Rosenberg AE. Novel fusion genes in spindle cell rhabdomyosarcoma: The spectrum broadens. Genes Chromosomes Cancer. 2021;60(10):687–694. doi:10.1002/gcc.22978
- Hugle M, Belz K, Fulda S. Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs. Cell Death Differ. 2015;22(12):1946–1956. doi:10.1038/cdd.2015.59
- Rogojanu R, Thalhammer T, Thiem U, et al. Quantitative image analysis of epithelial and stromal area in histological sections of colorectal cancer: An emerging diagnostic tool. Biomed Res Int. 2015;2015:569071. doi:10.1155/2015/569071
- Scheinman MM, Morady F. Invasive cardiac electrophysiologic testing: The current state of the art. Circulation. 1983;67(6):1169–1173. doi:10.1161/01.cir.67.6.1169
- Kahen E, Yu D, Harrison DJ, et al. Identification of clinically achievable combination therapies in childhood rhabdomyosarcoma. Cancer Chemother Pharmacol. 2016;78(2):313–323. doi:10.1007/s00280-016-3077-8
- Stewart E, Federico SM, Chen X, et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549(7670):96–100. doi:10.1038/nature23647
- Brandsma I, Fleuren EDG, Williamson CT, Lord CJ. Directing the use of DDR kinase inhibitors in cancer treatment. Exp Opin Investig Dugs. 2017;26(12):1341–1355. doi:10.1080/13543784.2017.1389895
- Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355(6330):1152–1158. doi:10.1126/science.aam7344
- Fam HK, Walton C, Mitra SA, et al. TDP1 and PARP1 deficiency are cytotoxic to rhabdomyosarcoma cells. Mol Cancer Res. 2013;11(10):1179–1192. doi:10.1158/1541-7786.MCR-12-0575
- Smith MA, Reynolds CP, Kang MH, et al. Synergistic activity of PARP inhibition by talazoparib (BMN 673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program. Clin Cancer Res. 2015;21(4):819–832. doi:10.1158/1078-0432.CCR-14-2572
- Basit F, Humphreys R, Fulda S. RIP1 protein-dependent assembly of a cytosolic cell death complex is required for inhibitor of apoptosis (IAP) inhibitor-mediated sensitization to lexatumumab-induced apoptosis. J Biol Chem. 2012;287(46):38767–38777. doi:10.1074/jbc.M112.398966
- Ueno M, Ikeda M, Morizane C, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: A non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol. 2019;4(8):611–621. doi:10.1016/S2468-1253(19)30086-X
- Dantonello TM, Int-Veen C, Schuck A, et al. Survival following disease recurrence of primary localized alveolar rhabdomyosarcoma. Pediatr Blood Cancer. 2013;60(8):1267–1273. doi:10.1002/pbc.24488
- Malempati S, Hawkins DS. Rhabdomyosarcoma: Review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59(1):5–10. doi:10.1002/pbc.24118
- Maurer HM, Crist W, Lawrence W, et al. The Intergroup Rhabdomyosarcoma Study I: A final report. Cancer. 1988;61(2):209–220. doi:10.1002/1097-0142(19880115)61:2<209::AID-CNCR2820610202>3.0.CO;2-L
- Maurer HM, Gehan EA, Beltangady M, et al. The Intergroup Rhabdomyosarcoma Study II: Objectives and study design. Cancer. 1993;71(5):1904–1922. doi:10.1002/1097-0142(19930301)71:5<1904::AID-CNCR2820710530>3.0.CO;2-X
- Bayoumy M, Wynn T, Jamil A, Kahwash S, Klopfenstein K, Ruymann F. Prenatal presentation supports the in utero development of congenital leukemia: A case report. J Pediatr Hematol Oncol. 2003;25(2):148–152. doi:10.1097/00043426-200302000-00013
- Najem S, Langemann D, Appl B, et al. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L. Oncotarget. 2016;7(45):72634–72653. doi:10.18632/oncotarget.12055
- Martino E, Casamassima G, Castiglione S, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 2018;28(17):2816–2826. doi:10.1016/j.bmcl.2018.06.044
- Avendaño C, Menéndez JC. Anticancer drugs acting via radical species, photosensitizers and photodynamic therapy of cancer. In: Medicinal Chemistry of Anticancer Drugs. Amsterdam, the Netherlands: Elsevier; 2008:93–138. doi:10.1016/B978-0-444-52824-7.00004-4
- Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci U S A. 1985;82(16):5328–5331. doi:10.1073/pnas.82.16.5328
- Koscielniak E, Harms D, Henze G, et al. Results of treatment for soft tissue sarcoma in childhood and adolescence: A final report of the German Cooperative Soft Tissue Sarcoma Study CWS-86. J Clin Oncol. 1999;17(12):3706–3719. doi:10.1200/JCO.1999.17.12.3706
- Furlanut M, Franceschi L. Pharmacology of ifosfamide. Oncology. 2003;65(Suppl 2):2–6. doi:10.1159/000073350
- Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91(3):613–621. doi:10.1002/1097-0142(20010201)91:3<613::AID-CNCR1042>3.0.CO;2-R
- Eaton BR, McDonald MW, Kim S, et al. Radiation therapy target volume reduction in pediatric rhabdomyosarcoma: Implications for patterns of disease recurrence and overall survival. Cancer. 2013;119(8):1578–1585. doi:10.1002/cncr.27934
- Bisogno G, De Salvo GL, Bergeron C, et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20(11):1566–1575. doi:10.1016/S1470-2045(19)30617-5
- Ladra MM, Szymonifka JD, Mahajan A, et al. Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. J Clin Oncol. 2014;32(33):3762–3770. doi:10.1200/JCO.2014.56.1548
- McDonald MW, Esiashvili N, George BA, et al. Intensity-modulated radiotherapy with use of cone-down boost for pediatric head-and-neck rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2008;72(3):884–891. doi:10.1016/j.ijrobp.2008.01.058
- Saltzman AF, Cost NG. Current treatment of pediatric bladder and prostate rhabdomyosarcoma. Curr Urol Rep. 2018;19(1):11. doi:10.1007/s11934-018-0761-8
- Terezakis SA, Wharam MD. Radiotherapy for rhabdomyosarcoma: Indications and outcome. Clin Oncol. 2013;25(1):27–35. doi:10.1016/j.clon.2012.07.009
- Weigel BJ, Breitfeld PP, Hawkins D, Crist WM, Baker KS. Role of high-dose chemotherapy with hematopoietic stem cell rescue in the treatment of metastatic or recurrent rhabdomyosarcoma. J Pediatr Hematol Oncol. 2001;23(5):272–276. doi:10.1097/00043426-200106000-00007
- Arndt CAS, Stoner JA, Hawkins DS, et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: Children’s Oncology Group Study D9803. J Clin Oncol. 2009;27(31):5182–5188. doi:10.1200/JCO.2009.22.3768
- Mercado G, Barr F. Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: Recent advances. Curr Mol Med. 2007;7(1):47–61. doi:10.2174/156652407779940440
- Williamson D, Missiaglia E, Chisholm J, Shipley J. Inconvenience of convenience cohort: Letter. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1388. doi:10.1158/1055-9965.EPI-12-0724
- Vo TT, Ryan J, Carrasco R, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151(2):344–355. doi:10.1016/j.cell.2012.08.038
- Gryder BE, Yohe ME, Chou HC, et al. PAX3–FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 2017;7(8):884–899. doi:10.1158/2159-8290.CD-16-1297
- Salesse S, Verfaillie CM. BCR/ABL: From molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002;21(56):8547–8559. doi:10.1038/sj.onc.1206082
- Sasaki T, Rodig SJ, Chirieac LR, Jänne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–1780. doi:10.1016/j.ejca.2010.04.002
- Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and future treatment strategies for rhabdomyosarcoma. Front Oncol. 2019;9:1458. doi:10.3389/fonc.2019.01458
- Wan X, Yeung C, Heske C, Mendoza A, Helman LJ. IGF-1R inhibition activates a YES/SFK bypass resistance pathway: Rational basis for co-targeting IGF-1R and Yes/SFK kinase in rhabdomyosarcoma. Neoplasia. 2015;17(4):358–366. doi:10.1016/j.neo.2015.03.001
- van Gaal JC, Roeffen MHS, Flucke UE, et al. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: A rational choice. Eur J Cancer. 2013;49(16):3462–3470. doi:10.1016/j.ejca.2013.06.022
- van den Broeke LT, Pendleton CD, Mackall C, Helman LJ, Berzofsky JA. Identification and epitope enhancement of a PAX-FKHR fusion protein breakpoint epitope in alveolar rhabdomyosarcoma cells created by a tumorigenic chromosomal translocation inducing CTL capable of lysing human tumors. Cancer Res. 2006;66(3):1818–1823. doi:10.1158/0008-5472.CAN-05-2549
- Camero S, Ceccarelli S, De Felice F, et al. PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol. 2019;145(1):137–152. doi:10.1007/s00432-018-2774-6
- Fulda S. Promises and challenges of Smac mimetics as cancer therapeutics. Clin Cancer Res. 2015;21(22):5030–5036. doi:10.1158/1078-0432.CCR-15-0365
- Dobson CC, Naing T, Beug ST, et al. Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget. 2017;8(2):3495–3508. doi:10.18632/oncotarget.13849
- Heinicke U, Haydn T, Kehr S, Vogler M, Fulda S. BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis. Oncogene. 2018;37(39):5325–5339. doi:10.1038/s41388-018-0212-5
- Damia G, D’Incalci M. Mechanisms of resistance to alkylating agents. Cytotechnology. 1998;27(1/3):165–173. doi:10.1023/A:1008060720608
- Malhotra V, Perry MC. Classical chemotherapy: Mechanisms, toxicities and the therapeutc window. Cancer Biol Ther. 2003;2(Suppl 1):1–3. doi:10.4161/cbt.199
- Lind MJ. Principles of cytotoxic chemotherapy. Medicine (Baltimore). 2008;36(1):19–23. doi:10.1016/j.mpmed.2007.10.003
- Zółtowska K, Sobczak M. Perspectives of use of polymer carriers of epidoxorubicin and cyclophosphamide in cancer therapy [in Polish]. Polim Med. 2014;44(1):51–62. PMID:24918656.
- Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7(3):339–348. doi:10.15171/apb.2017.041
- Kaseb H, Kuhn J, Babiker HM. Rhabdomyosarcoma. In: StatPearls. Treasure Island, USA: StatPearls Publishing; 2022:Bookshelf ID: NBK507721. http://www.ncbi.nlm.nih.gov/books/NBK507721/. Accessed February 13, 2023.
- Luo H, Vong CT, Chen H, et al. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin Med. 2019;14(1):48. doi:10.1186/s13020-019-0270-9
- Enam SF, Kilic CY, Huang J, et al. Cytostatic hypothermia and its impact on glioblastoma and survival. Sci Adv. 2022;8(47):eabq4882. doi:10.1126/sciadv.abq4882
- Hashem S, Ali TA, Akhtar S, et al. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother. 2022;150:113054. doi:10.1016/j.biopha.2022.113054
- Naeem M, Iqbal MO, Khan H, et al. A review of twenty years of research on the regulation of signaling pathways by natural products in breast cancer. Molecules. 2022;27(11):3412. doi:10.3390/molecules27113412
- Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–661. doi:10.1021/acs.jnatprod.5b01055
- Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–79. doi:10.1016/j.jep.2005.05.011
- Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: An historical overview of the drug discovery approaches. Nat Prod Res. 2018;32(16):1926–1950. doi:10.1080/14786419.2017.1356838
- Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. Pharmacol Res. 2009;59(6):365–378. doi:10.1016/j.phrs.2009.01.017
- Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Exp Rev Clin Pharmacol. 2020;13(3):265–285. doi:10.1080/17512433.2020.1738218
- Wilson L, Jordan MA. New microtubule/tubulin-targeted anticancer drugs and novel chemotherapeutic strategies. J Chemother. 2004;16(Suppl 4):83–85. doi:10.1179/joc.2004.16.Supplement-1.83
- Altinoz MA, Ozpinar A, Alturfan EE, Elmaci I. Vinorelbine’s anti-tumor actions may depend on the mitotic apoptosis, autophagy and inflammation: Hypotheses with implications for chemo-immunotherapy of advanced cancers and pediatric gliomas. J Chemother. 2018;30(4):203–212. doi:10.1080/1120009X.2018.1487149
- Magge RS, DeAngelis LM. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev. 2015;29(2):93–100. doi:10.1016/j.blre.2014.09.012
- Kudlowitz D, Muggia F. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel): Extending its indications. Exp Opin Drug Safety. 2014;13(6):681–685. doi:10.1517/14740338.2014.910193
- Willson ML, Burke L, Ferguson T, Ghersi D, Nowak AK, Wilcken N. Taxanes for adjuvant treatment of early breast cancer. Cochrane Database Syst Rev. 2019;9(9):CD004421. doi:10.1002/14651858.CD004421.pub3
- Li Y, Yu H, Han F, Wang M, Luo Y, Guo X. Biochanin A induces S phase arrest and apoptosis in lung cancer cells. Biomed Res Int. 2018;2018:3545376. doi:10.1155/2018/3545376
- Cheng YM, Shen CJ, Chang CC, Chou CY, Tsai CC, Hsu YC. Inducement of apoptosis by cucurbitacin E, a tetracyclic triterpenes, through death receptor 5 in human cervical cancer cell lines. Cell Death Discov. 2017;3(1):17014. doi:10.1038/cddiscovery.2017.14
- Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373–398. doi:10.1042/BCJ20160583
- Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol Pharm. 2010;7(2):307–349. doi:10.1021/mp900243b
- Marinello J, Delcuratolo M, Capranico G. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives. Int J Mol Sci. 2018;19(11):3480. doi:10.3390/ijms19113480
- Seca A, Pinto D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci. 2018;19(1):263. doi:10.3390/ijms19010263
- Ashraf MA. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. Biomed Res Int. 2020;2020:8602879. doi:10.1155/2020/8602879
- Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:5381692. doi:10.1155/2019/5381692
- Batool T, Makky EA, Jalal M, Yusoff MM. A comprehensive review on l-asparaginase and its applications. Appl Biochem Biotechnol. 2016;178(5):900–923. doi:10.1007/s12010-015-1917-3
- Khalifa SAM, Elias N, Farag MA, et al. Marine natural products: A source of novel anticancer drugs. Marine Drugs. 2019;17(9):491. doi:10.3390/md17090491
- Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma: The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle. 2012;2(1):25. doi:10.1186/2044-5040-2-25
- Shrestha R, Mohankumar K, Martin G, et al. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J Exp Clin Cancer Res. 2021;40(1):392. doi:10.1186/s13046-021-02199-9
- Ciolino HP, Clarke R, Yeh GC, Plouzek CA. Inhibition of P-glycoprotein activity and reversal of multidrug resistance in vitro by rosemary extract. Eur J Cancer. 1999;35(10):1541–1545. doi:10.1016/S0959-8049(99)00180-X
- Peng CH, Su JD, Chyau CC, et al. Supercritical fluid extracts of rosemary leaves exhibit potent anti-inflammation and anti-tumor effects. Biosci Biotechnol Biochem. 2007;71(9):2223–2232. doi:10.1271/bbb.70199
- Ibañez E, Kubátová A, Señoráns FJ, Cavero S, Reglero G, Hawthorne SB. Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem. 2003;51(2):375–382. doi:10.1021/jf025878j
- Kakouri E, Nikola O, Kanakis C, et al. Cytotoxic effect of Rosmarinus officinalis extract on glioblastoma and rhabdomyosarcoma cell lines. Molecules. 2022;27(19):6348. doi:10.3390/molecules27196348
- Urla C, Stagno MJ, Fuchs J, Warmann SW, Schmid E. Anticancer bioactivity of zerumbone on pediatric rhabdomyosarcoma cells [published online as ahead of print on August 5, 2022]. J Cancer Res Clin Oncol. 2022. doi:10.1007/s00432-022-04237-1
- Sorg C, Schmid E, Bortel N, Fuchs J, Ellerkamp V. Antitumor effects of curcumin in pediatric rhabdomyosarcoma in combination with chemotherapy and phototherapy in vitro. Int J Oncol. 2020;58(2):266–274. doi:10.3892/ijo.2020.5155
- Maqsood M, Qureshi R, Ikram M, et al. Preliminary screening of methanolic plant extracts against human rhabdomyosarcoma cell line from salt range, Pakistan. Pak J Bot. 2022;47(1):353–357. https://www.academia.edu/21032120. Accessed October 11, 2022.
- Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med. 2018;13:13. doi:10.1186/s13020-018-0171-3
- Ferrari A, Gasparini P, Casanova M. A home run for rhabdomyosarcoma after 30 years: What now? Tumori. 2020;106(1):5–11. doi:10.1177/0300891619888021
- Jabeen S, Hanif M, Mumtaz Khan M, Khan Quadri M. Natural products sources and their active compounds on disease prevention: A review. Int J Chem Biol Sci. 2016;6:76–83. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9859431f3143cb7457ee2d7cf87bed205c423fe6. Accessed October 11, 2022.
- Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLIJ. 2018;17:420–451. doi:10.17179/EXCLI2018-1174
- Dubińska-Magiera M, Niedbalska-Tarnowska J, Migocka-Patrzałek M, Posyniak E, Daczewska M. Characterization of Hspb8 in zebrafish. Cells. 2020;9(6):1562. doi:10.3390/cells9061562
- Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a model for the study of lipid-lowering drug-induced myopathies. Int J Mol Sci. 2021;22(11):5654. doi:10.3390/ijms22115654
- Migocka-Patrzałek M, Lewicka A, Elias M, Daczewska M. The effect of muscle glycogen phosphorylase (Pygm) knockdown on zebrafish morphology. Int J Biochem Cell Biol. 2020;118:105658. doi:10.1016/j.biocel.2019.105658
- Migocka-Patrzałek M, Elias M. Muscle glycogen phosphorylase and its functional partners in health and disease. Cells. 2021;10(4):883. doi:10.3390/cells10040883
- Niedbalska-Tarnowska J, Ochenkowska K, Migocka-Patrzałek M, Dubińska-Magiera M. Assessment of the preventive effect of L-carnitine on post-statin muscle damage in a zebrafish model. Cells. 2022;11(8):1297. doi:10.3390/cells11081297
- Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: Lessons from drosophila and zebrafish. Molecules. 2015;20(4):6237–6253. doi:10.3390/molecules20046237
- Feitsma H, Cuppen E. Zebrafish as a cancer model. Mol Cancer Res. 2008;6(5):685–694. doi:10.1158/1541-7786.MCR-07-2167
- Bian C, Chen W, Ruan Z, et al. Genome and transcriptome sequencing of casper and roy zebrafish mutants provides novel genetic clues for iridophore loss. Int J Mol Sci. 2020;21(7):2385. doi:10.3390/ijms21072385
- Yan C, Yang Q, Do D, Brunson DC, Langenau DM. Adult immune compromised zebrafish for xenograft cell transplantation studies. EBioMedicine. 2019;47:24–26. doi:10.1016/j.ebiom.2019.08.016
- Zhang B, Xuan C, Ji Y, Zhang W, Wang D. Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer. 2015;14(3):487–493. doi:10.1007/s10689-015-9802-3