Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/161161

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Wei G, Tan M, Wang C, Liang L. Decreased miR-127 promotes the occurrence of breast cancer via increasing the expression of SPP1 [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/161161

Decreased miR-127 promotes the occurrence of breast cancer via increasing the expression of SPP1

Guijiang Wei1,2,3,B,D, Meiying Tan1,2,3,A,B, Chunfang Wang1,2,3,C,E, Lina Liang1,2,3,A,F

1 Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China

2 Baise Key Laboratory of Clinical Molecular Diagnosis, Research and Development for High Incidence Diseases, China

3 Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi Universities, Baise, China

Abstract

Background. The expression of miR-127 has been reported to be decreased in the breast tissue of patients with breast cancer (BRC). However, the mechanism of miR-127 involvement in the pathogenesis of BRC is still unclear and requires urgent clarification.
Objectives. To explore the role of miR-127 in the pathogenesis of BRC.
Material and Methods. In this study, we measured the expression of miR-127 in blood samples of 60 BRC patients and 60 controls, investigated the influence of miR-127 on the viability and apoptosis of MCF-7 and MDA-231 cells, identified a miR-127 target gene, and determined the expression level of the target gene in the blood samples of BRC patients and controls.
Results. We found that miR-127 expression was significantly decreased in the plasma of BRC patients compared to controls. Additionally, the upregulation of miR-127 in MCF-7 and MDA-231 cells inhibited their proliferation and promoted their apoptosis. Conversely, the downregulation of miR-127 promoted cell proliferation and inhibited their apoptosis. The SPP1 was successively predicted and validated as a target gene of miR-127. Finally, the expression level of SPP1 was significantly increased in the plasma of BRC patients compared to controls.
Conclusion. Our study demonstrated that decreased miR-127 may promote BRC cell proliferation, inhibit apoptosis and promote the occurrence of BRC through increasing the SPP1 expression level.

Key words

pathogenesis, breast cancer, SPP1, miR-127

Graphical abstract


Graphical abstracts

References (38)

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
  2. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac J Cancer Prev. 2019;20(7):2015–2020. doi:10.31557/APJCP.2019.20.7.2015
  3. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi:10.3322/caac.21583
  4. Li H, Zheng RS, Zhang SW, et al. Incidence and mortality of female breast cancer in China, 2014 [in Chinese]. Zhonghua Zhong Liu Za Zhi. 2018;40(3):166–171. doi:10.3760/cma.j.issn.0253-3766.2018.03.002
  5. Escala-Garcia M, Morra A, Canisius S, et al. Breast cancer risk factors and their effects on survival: A Mendelian randomisation study. BMC Med. 2020;18(1):327. doi:10.1186/s12916-020-01797-2
  6. Li N, Deng Y, Zhou L, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. J Hematol Oncol. 2019;12(1):140. doi:10.1186/s13045-019-0828-0
  7. Ugalde-Morales E, Grassmann F, Humphreys K, et al. Association between breast cancer risk and disease aggressiveness: Characterizing underlying gene expression patterns. Int J Cancer. 2021;148(4):884–894. doi:10.1002/ijc.33270
  8. Barros-Oliveira M da C, Costa-Silva DR, dos Santos AR, Pereira RO, Soares-Júnior JM, da Silva BB. Influence of CYP19A1 gene expression levels in women with breast cancer: A systematic review of the literature. Clinics (Sao Paulo). 2021;76:e2846. doi:10.6061/clinics/2021/e2846
  9. Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer. 2020;19(1):61. doi:10.1186/s12943-020-01181-x
  10. Liu J, Zhao G, Liu XL, et al. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci. 2021;272:119238. doi:10.1016/j.lfs.2021.119238
  11. Bahreini F, Rayzan E, Rezaei N. MicroRNA-related single-nucleotide polymorphisms and breast cancer. J Cell Physiol. 2021;236(3):1593–1605. doi:10.1002/jcp.29966
  12. Sabit H, Cevik E, Tombuloglu H, Abdel-Ghany S, Tombuloglu G, Esteller M. Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol. 2021;157:103196. doi:10.1016/j.critrevonc.2020.103196
  13. Chen PS, Lin SC, Tsai SJ. Complexity in regulating microRNA biogenesis in cancer. Exp Biol Med (Maywood). 2020;245(5):395–401. doi:10.1177/1535370220907314
  14. Dexheimer PJ, Cochella L. MicroRNAs: From mechanism to organism. Front Cell Dev Biol. 2020;8:409. doi:10.3389/fcell.2020.00409
  15. Annese T, Tamma R, De Giorgis M, Ribatti D. MicroRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 2020;10:581007. doi:10.3389/fonc.2020.581007
  16. Chen J, Wang M, Guo M, Xie Y, Cong YS. MiR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One. 2013;8(11):e80266. doi:10.1371/journal.pone.0080266
  17. Wang S, Li H, Wang J, Wang D, Yao A, Li Q. Prognostic and biological significance of microRNA-127 expression in human breast cancer. Dis Markers. 2014;2014:401986. doi:10.1155/2014/401986
  18. Zhou ZB, Huang GX, Fu Q, et al. CircRNA33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 2019;27(3):531–541. doi:10.1016/j.ymthe.2019.01.006
  19. Li Z, Yuan B, Pei Z, et al. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol Med. 2019;23(10):6554–6564. doi:10.1111/jcmm.14400
  20. Chen C, Lin S, Zhou L, et al. MicroRNA 127 5p attenuates severe pneumonia via tumor necrosis factor receptor associated factor 1. Exp Ther Med. 2020;20(3):2856–2862. doi:10.3892/etm.2020.8997
  21. Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–8838. doi:10.1002/jcp.29725
  22. Tang FH, Chang WA, Tsai EM, Tsai MJ, Kuo PL. Investigating novel genes potentially involved in endometrial adenocarcinoma using next-generation sequencing and bioinformatic approaches. Int J Med Sci. 2019;16(10):1338–1348. doi:10.7150/ijms.38219
  23. Pathak S, Meng WJ, Nandy SK, et al. Radiation and SN38 treatments modulate the expression of microRNAs, cytokines and chemokines in colon cancer cells in a p53-directed manner. Oncotarget. 2015;6(42):44758–44780. doi:10.18632/oncotarget.5815
  24. Cai L, Wang Y, Wu J, Wu G. Hsa_circ_0008234 facilitates proliferation of cutaneous squamous cell carcinoma through targeting miR-127-5p to regulate ADCY7. Arch Dermatol Res. 2022;314(6):541–551. doi:10.1007/s00403-021-02261-8
  25. Xiong G, Diao D, Lu D, et al. Circular RNA circNELL2 acts as the sponge of miR-127-5p to promote esophageal squamous cell carcinoma progression. Onco Targets Ther. 2020;13:9245–9255. doi:10.2147/OTT.S247847
  26. Liang M, Yao W, Shi B, et al. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis. 2021;12(7):639. doi:10.1038/s41419-021-03903-5
  27. Chang S, Sun L, Feng G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed Pharmacother. 2019;117:109133. doi:10.1016/j.biopha.2019.109133
  28. Su Y, Xu C, Liu Y, Hu Y, Wu H. Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY). 2019;11(10):3362–3375. doi:10.18632/aging.101988
  29. Zhang W, Zhu L, Yang G, et al. Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p. Biosci Rep. 2020;40(7):BSR20191418. doi:10.1042/BSR20191418
  30. Huan L, Bao C, Chen D, et al. MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-κB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci. 2016;107(3):258–266. doi:10.1111/cas.12869
  31. Pronina IV, Loginov VI, Burdennyy AM, et al. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 2017;604:1–8. doi:10.1016/j.gene.2016.12.018
  32. Deci MB, Liu M, Gonya J, et al. Carrier-free CXCR4-targeted nanoplexes designed for polarizing macrophages to suppress tumor growth. Cel Mol Bioeng. 2019;12(5):375–388. doi:10.1007/s12195-019-00589-w
  33. Tu M, Li Y, Zeng C, et al. MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Sci Rep. 2016;6(1):25032. doi:10.1038/srep25032
  34. Song G, Wang L. MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One. 2008;3(10):e3574. doi:10.1371/journal.pone.0003574
  35. Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 2008;3(5):e2141. doi:10.1371/journal.pone.0002141
  36. Qin H, Wang R, Wei G, et al. Overexpression of osteopontin promotes cell proliferation and migration in human nasopharyngeal carcinoma and is associated with poor prognosis. Eur Arch Otorhinolaryngol. 2018;275(2):525–534. doi:10.1007/s00405-017-4827-x
  37. Liu H, Chen A, Guo F, Yuan L. Influence of osteopontin short hairpin RNA on the proliferation and invasion of human renal cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2010;30(1):61–68. doi:10.1007/s11596-011-0111-7
  38. Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene. 2007;26(20):2840–2850. doi:10.1038/sj.onc.1210096