Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/161161
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Wei G, Tan M, Wang C, Liang L. Decreased miR-127 promotes the occurrence of breast cancer via increasing the expression of SPP1 [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/161161
Decreased miR-127 promotes the occurrence of breast cancer via increasing the expression of SPP1
1 Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
2 Baise Key Laboratory of Clinical Molecular Diagnosis, Research and Development for High Incidence Diseases, China
3 Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi Universities, Baise, China
Abstract
Background. The expression of miR-127 has been reported to be decreased in the breast tissue of patients with breast cancer (BRC). However, the mechanism of miR-127 involvement in the pathogenesis of BRC is still unclear and requires urgent clarification.
Objectives. To explore the role of miR-127 in the pathogenesis of BRC.
Material and Methods. In this study, we measured the expression of miR-127 in blood samples of 60 BRC patients and 60 controls, investigated the influence of miR-127 on the viability and apoptosis of MCF-7 and MDA-231 cells, identified a miR-127 target gene, and determined the expression level of the target gene in the blood samples of BRC patients and controls.
Results. We found that miR-127 expression was significantly decreased in the plasma of BRC patients compared to controls. Additionally, the upregulation of miR-127 in MCF-7 and MDA-231 cells inhibited their proliferation and promoted their apoptosis. Conversely, the downregulation of miR-127 promoted cell proliferation and inhibited their apoptosis. The SPP1 was successively predicted and validated as a target gene of miR-127. Finally, the expression level of SPP1 was significantly increased in the plasma of BRC patients compared to controls.
Conclusion. Our study demonstrated that decreased miR-127 may promote BRC cell proliferation, inhibit apoptosis and promote the occurrence of BRC through increasing the SPP1 expression level.
Key words
pathogenesis, breast cancer, SPP1, miR-127
Graphical abstract

References (38)
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
- Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac J Cancer Prev. 2019;20(7):2015–2020. doi:10.31557/APJCP.2019.20.7.2015
- DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi:10.3322/caac.21583
- Li H, Zheng RS, Zhang SW, et al. Incidence and mortality of female breast cancer in China, 2014 [in Chinese]. Zhonghua Zhong Liu Za Zhi. 2018;40(3):166–171. doi:10.3760/cma.j.issn.0253-3766.2018.03.002
- Escala-Garcia M, Morra A, Canisius S, et al. Breast cancer risk factors and their effects on survival: A Mendelian randomisation study. BMC Med. 2020;18(1):327. doi:10.1186/s12916-020-01797-2
- Li N, Deng Y, Zhou L, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. J Hematol Oncol. 2019;12(1):140. doi:10.1186/s13045-019-0828-0
- Ugalde-Morales E, Grassmann F, Humphreys K, et al. Association between breast cancer risk and disease aggressiveness: Characterizing underlying gene expression patterns. Int J Cancer. 2021;148(4):884–894. doi:10.1002/ijc.33270
- Barros-Oliveira M da C, Costa-Silva DR, dos Santos AR, Pereira RO, Soares-Júnior JM, da Silva BB. Influence of CYP19A1 gene expression levels in women with breast cancer: A systematic review of the literature. Clinics (Sao Paulo). 2021;76:e2846. doi:10.6061/clinics/2021/e2846
- Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer. 2020;19(1):61. doi:10.1186/s12943-020-01181-x
- Liu J, Zhao G, Liu XL, et al. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci. 2021;272:119238. doi:10.1016/j.lfs.2021.119238
- Bahreini F, Rayzan E, Rezaei N. MicroRNA-related single-nucleotide polymorphisms and breast cancer. J Cell Physiol. 2021;236(3):1593–1605. doi:10.1002/jcp.29966
- Sabit H, Cevik E, Tombuloglu H, Abdel-Ghany S, Tombuloglu G, Esteller M. Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol. 2021;157:103196. doi:10.1016/j.critrevonc.2020.103196
- Chen PS, Lin SC, Tsai SJ. Complexity in regulating microRNA biogenesis in cancer. Exp Biol Med (Maywood). 2020;245(5):395–401. doi:10.1177/1535370220907314
- Dexheimer PJ, Cochella L. MicroRNAs: From mechanism to organism. Front Cell Dev Biol. 2020;8:409. doi:10.3389/fcell.2020.00409
- Annese T, Tamma R, De Giorgis M, Ribatti D. MicroRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 2020;10:581007. doi:10.3389/fonc.2020.581007
- Chen J, Wang M, Guo M, Xie Y, Cong YS. MiR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One. 2013;8(11):e80266. doi:10.1371/journal.pone.0080266
- Wang S, Li H, Wang J, Wang D, Yao A, Li Q. Prognostic and biological significance of microRNA-127 expression in human breast cancer. Dis Markers. 2014;2014:401986. doi:10.1155/2014/401986
- Zhou ZB, Huang GX, Fu Q, et al. CircRNA33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 2019;27(3):531–541. doi:10.1016/j.ymthe.2019.01.006
- Li Z, Yuan B, Pei Z, et al. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol Med. 2019;23(10):6554–6564. doi:10.1111/jcmm.14400
- Chen C, Lin S, Zhou L, et al. MicroRNA 127 5p attenuates severe pneumonia via tumor necrosis factor receptor associated factor 1. Exp Ther Med. 2020;20(3):2856–2862. doi:10.3892/etm.2020.8997
- Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–8838. doi:10.1002/jcp.29725
- Tang FH, Chang WA, Tsai EM, Tsai MJ, Kuo PL. Investigating novel genes potentially involved in endometrial adenocarcinoma using next-generation sequencing and bioinformatic approaches. Int J Med Sci. 2019;16(10):1338–1348. doi:10.7150/ijms.38219
- Pathak S, Meng WJ, Nandy SK, et al. Radiation and SN38 treatments modulate the expression of microRNAs, cytokines and chemokines in colon cancer cells in a p53-directed manner. Oncotarget. 2015;6(42):44758–44780. doi:10.18632/oncotarget.5815
- Cai L, Wang Y, Wu J, Wu G. Hsa_circ_0008234 facilitates proliferation of cutaneous squamous cell carcinoma through targeting miR-127-5p to regulate ADCY7. Arch Dermatol Res. 2022;314(6):541–551. doi:10.1007/s00403-021-02261-8
- Xiong G, Diao D, Lu D, et al. Circular RNA circNELL2 acts as the sponge of miR-127-5p to promote esophageal squamous cell carcinoma progression. Onco Targets Ther. 2020;13:9245–9255. doi:10.2147/OTT.S247847
- Liang M, Yao W, Shi B, et al. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis. 2021;12(7):639. doi:10.1038/s41419-021-03903-5
- Chang S, Sun L, Feng G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed Pharmacother. 2019;117:109133. doi:10.1016/j.biopha.2019.109133
- Su Y, Xu C, Liu Y, Hu Y, Wu H. Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY). 2019;11(10):3362–3375. doi:10.18632/aging.101988
- Zhang W, Zhu L, Yang G, et al. Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p. Biosci Rep. 2020;40(7):BSR20191418. doi:10.1042/BSR20191418
- Huan L, Bao C, Chen D, et al. MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-κB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci. 2016;107(3):258–266. doi:10.1111/cas.12869
- Pronina IV, Loginov VI, Burdennyy AM, et al. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 2017;604:1–8. doi:10.1016/j.gene.2016.12.018
- Deci MB, Liu M, Gonya J, et al. Carrier-free CXCR4-targeted nanoplexes designed for polarizing macrophages to suppress tumor growth. Cel Mol Bioeng. 2019;12(5):375–388. doi:10.1007/s12195-019-00589-w
- Tu M, Li Y, Zeng C, et al. MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Sci Rep. 2016;6(1):25032. doi:10.1038/srep25032
- Song G, Wang L. MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One. 2008;3(10):e3574. doi:10.1371/journal.pone.0003574
- Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 2008;3(5):e2141. doi:10.1371/journal.pone.0002141
- Qin H, Wang R, Wei G, et al. Overexpression of osteopontin promotes cell proliferation and migration in human nasopharyngeal carcinoma and is associated with poor prognosis. Eur Arch Otorhinolaryngol. 2018;275(2):525–534. doi:10.1007/s00405-017-4827-x
- Liu H, Chen A, Guo F, Yuan L. Influence of osteopontin short hairpin RNA on the proliferation and invasion of human renal cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2010;30(1):61–68. doi:10.1007/s11596-011-0111-7
- Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene. 2007;26(20):2840–2850. doi:10.1038/sj.onc.1210096