Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/159756

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Urbanowicz TK, Rodzki M, Michalak M, et al. Large unstained cell (LUC) count as a predictor of carotid artery occlusion [published online as ahead of print on March 15, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159756

Large unstained cell (LUC) count as a predictor of carotid artery occlusion

Tomasz Kamil Urbanowicz1,A,B,C,D,F, Michał Rodzki1,B,C,F, Michał Michalak2,C,F, Anna Olasińska-Wiśniewska1,C,E,F, Anna Witkowska1,B,F, Beata Krasińska3,E,F, Michał Bociański1,B,F, Aleksandra Krasińska-Płachta4,B,F, Agnieszka Cieśla5,B,F, Sebastian Stefaniak1,E,F, Marek Jemielity1,E,F, Zbigniew Krasiński6,E,F

1 Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poland

2 Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poland

3 Department of Hypertension, Angiology and Internal Diseases, Poznan University of Medical Sciences, Poland

4 Department of Ophthalmology, Poznan University of Medical Sciences, Poland

5 Poznan University of Medical Sciences, Poland

6 Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poland

Abstract

Background. Carotid artery stenosis is often considered a stable clinical condition, and the underlying atherosclerosis is thought to have an inflammatory background.
Objectives. The aim of the study was to assess the value of different parameters obtained from whole blood counts for the prediction of advanced carotid artery atherosclerosis, including vessel occlusion, irrespective of symptom occurrence.
Material and Methods. The study group comprised 290 patients (84 (29%) females and 206 (71%) males) with a mean age of 68 ±8 years, who were admitted to the Vascular Surgery Department due to significant carotid artery disease. Patients were retrospectively divided into 2 subgroups regarding the presence or absence of artery occlusion. The demographic, clinical and laboratory preoperative data were compared between both groups.
Results. We found significant differences in preoperative large unstained cell (LUC) counts between patients with and without carotid artery occlusion (p = 0.003), when analyzed with the Mann–Whitney test for independent samples. The receiver operating characteristic (ROC) curve showed that LUC count has prognostic properties for carotid artery occlusion, with an area under the curve (AUC) of 0.637 (p = 0.033), yielding a 69.70% sensitivity and a 51.75% specificity.
Conclusion. Large unstained cells represent an acute inflammatory state related to artery occlusion. An LUC count below the cutoff value of 0.16×109/L may be a predictor of carotid artery occlusion. Therefore, carotid artery occlusion should not be regarded as a chronic state, but as a clinical challenge being promoted by active inflammatory processes.

Key words

inflammation, atherosclerosis, occlusion, carotid stenosis, large unstained cells

Graphical abstract


Graphical abstracts

References (65)

  1. Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: Results from a nationwide population-based survey of 480 687 adults. Circulation. 2017;135(8):759–771. doi:10.1161/CIRCULATIONAHA.116.025250
  2. Spannella F, Di Pentima C, Giulietti F, et al. Prevalence of subclinical carotid atherosclerosis and role of cardiovascular risk factors in older adults: Atherosclerosis and aging are not synonyms. High Blood Press Cardiovasc Prev. 2020;27(3):231–238. doi:10.1007/s40292-020-00375-0
  3. Dossabhoy S, Arya S. Epidemiology of atherosclerotic carotid artery disease. Semin Vasc Surg. 2021;34(1):3–9. doi:10.1053/j.semvascsurg.2021.02.013
  4. de Weerd M, Greving JP, Hedblad B, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: An individual participant data meta-analysis. Stroke. 2010;41(6):1294–1297. doi:10.1161/STROKEAHA.110.581058
  5. Biswas M, Saba L, Omerzu T, et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial intelligence framework. J Digit Imaging. 2021;34(3):581–604. doi:10.1007/s10278-021-00461-2
  6. Hurford R, Wolters FJ, Li L, Lau KK, Küker W, Rothwell PM. Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: A population-based cohort study. Lancet Neurol. 2020;19(5):413–421. doi:10.1016/S1474-4422(20)30079-X
  7. Qi XY, Qu SL, Xiong WH, Rom O, Chang L, Jiang ZS. Perivascular adipose tissue (PVAT) in atherosclerosis: A double-edged sword. Cardiovasc Diabetol. 2018;17(1):134. doi:10.1186/s12933-018-0777-x
  8. Stanek A, Brożyna-Tkaczyk K, Myśliński W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients. 2021;13(11):3843. doi:10.3390/nu13113843
  9. Starzak M, Stanek A, Jakubiak GK, Cholewka A, Cieślar G. Arterial stiffness assessment by pulse wave velocity in patients with metabolic syndrome and its components: Is it a useful tool in clinical practice? Int J Environ Res Public Health. 2022;19(16):10368. doi:10.3390/ijerph191610368
  10. Chai JT, Biasiolli L, Li L, et al. Quantification of lipid-rich core in carotid atherosclerosis using magnetic resonance T2 mapping: Relation to clinical presentation. JACC Cardiovasc Imaging. 2017;10(7):747–756. doi:10.1016/j.jcmg.2016.06.013
  11. Cires-Drouet RS, Mozafarian M, Ali A, Sikdar S, Lal BK. Imaging of high-risk carotid plaques: Ultrasound. Semin Vasc Surg. 2017;30(1):44–53. doi:10.1053/j.semvascsurg.2017.04.010
  12. Choi E, Byun E, Kwon SU, et al. Carotid plaque composition assessed by CT predicts subsequent cardiovascular events among subjects with carotid stenosis. AJNR Am J Neuroradiol. 2021;42(12):2199–2206. doi:10.3174/ajnr.A7338
  13. Murata K, Murata N, Chu B, et al. Characterization of carotid atherosclerotic plaques using 3-dimensional MERGE magnetic resonance imaging and correlation with stroke risk factors. Stroke. 2020;51(2):475–480. doi:10.1161/STROKEAHA.119.027779
  14. Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406. doi:10.1038/s41569-019-0169-2
  15. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–636. doi:10.1161/CIRCRESAHA.115.306301
  16. Stanek A, Fazeli B, Bartuś S, Sutkowska E. The role of endothelium in physiological and pathological states: New data. Biomed Res Int. 2018;2018:1098039. doi:10.1155/2018/1098039
  17. Botts SR, Fish JE, Howe KL. Dysfunctional vascular endothelium as a driver of atherosclerosis: Emerging insights into pathogenesis and treatment. Front Pharmacol. 2021;12:787541. doi:10.3389/fphar.2021.787541
  18. Hyafil F, Vigne J. Imaging inflammation in atherosclerotic plaques: Just make it easy! J Nucl Cardiol. 2019;26(5):1705–1708. doi:10.1007/s12350-018-1289-5
  19. Jiang H, Ruan Z, Wang Z, et al. Simvastatin reduces atherosclerotic plaques and endothelial inflammatory response in atherosclerosis rats through TGF-β/Smad pathway. Minerva Med. 2020;111(5):504–507. doi:10.23736/S0026-4806.19.06119-6
  20. Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, et al. Monocyte-to-lymphocyte ratio as a predictor of worse long-term survival after off-pump surgical revascularization: Initial report. Medicina (Kaunas). 2021;57(12):1324. doi:10.3390/medicina57121324
  21. Urbanowicz T, Michalak M, Gąsecka A, et al. Postoperative neutrophil to lymphocyte ratio as an overall mortality midterm prognostic factor following OPCAB procedures. Clin Pract. 2021;11(3):587–597. doi:10.3390/clinpract11030074
  22. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, et al. The prognostic significance of neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR) and platelet to lymphocyte ratio (PLR) on long-term survival in off-pump coronary artery bypass grafting (OPCAB) procedures. Biology (Basel). 2021;11(1):34. doi:10.3390/biology11010034
  23. Pawlik A, Januszek R, Ruzsa Z, et al. Gender differences and long-term clinical outcomes in patients with chronic total occlusions of infrainguinal lower limb arteries treated from retrograde access with peripheral vascular interventions. Adv Med Sci. 2020;65(1):197–201. doi:10.1016/j.advms.2020.01.004
  24. Malik SA, Goldsweig AM. He said, she said: Sex differences in peripheral artery disease. Adv Med Sci. 2020;65(1):233–234. doi:10.1016/j.advms.2020.02.003
  25. Martin PJ, Anderson CC, Jones HM, Lai AP, Linch DC, Goldstone AH. A rise in the percentage of large unstained cells in the peripheral blood determined by the Hemalog D90 automated differential counter is a feature of impending myeloid engraftment following bone marrow transplantation. Clin Lab Haematol. 1986;8(1):1–8. doi:10.1111/j.1365-2257.1986.tb00069.x
  26. Vanker N, Ipp H. The use of the full blood count and differential parameters to assess immune activation levels in asymptomatic, untreated HIV infection. S Afr Med J. 2013;104(1):45–48. doi:10.7196/samj.6983
  27. Keseroğlu BB, Güngörer B. Predictive role of large unstained cells (LUC) and hematological data in the differential diagnosis of orchitis and testicular torsion. BSJ Health Sci. 2021;7(1):97–103. doi:10.19127/mbsjohs.882264
  28. Shin D, Lee MS, Kim DY, Lee MG, Kim DS. Increased large unstained cells value in varicella patients: A valuable parameter to aid rapid diagnosis of varicella infection. J Dermatol. 2015;42(8):795–799. doi:10.1111/1346-8138.12902
  29. Lanza F, Moretti S, Latorraca A, Scapoli G, Rigolin F, Castoldi G. Flow cytochemical analysis of peripheral lymphocytes in chronic B-lymphocytic leukemia: Prognostic role of the blast count determined by the H*1 system and its correlation with morphologic features. Leuk Res. 1992;16(6–7):639–646. doi:10.1016/0145-2126(92)90014-X
  30. Vanker N, Ipp H. Large unstained cells: A potentially valuable parameter in the assessment of immune activation levels in HIV infection. Acta Haematol. 2014;131(4):208–212. doi:10.1159/000355184
  31. Lv J, Gao M, Zong H, Ma G, Wei X, Zhao Y. Application of peripheral blood lymphocyte count in prediction of the presence of atypical lymphocytes. Clin Lab. 2020;66(6). doi:10.7754/Clin.Lab.2019.191113
  32. Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, et al. Monocyte/lymphocyte ratio and MCHC as predictors of collateral carotid artery disease: Preliminary report. J Pers Med. 2021;11(12):1266. doi:10.3390/jpm11121266
  33. Ministrini S, Carbone F, Montecucco F. Updating concepts on atherosclerotic inflammation: From pathophysiology to treatment. Eur J Clin Invest. 2021;51(5):e13467. doi:10.1111/eci.13467
  34. Mauricio D, Castelblanco E, Alonso N. Cholesterol and inflammation in atherosclerosis: An immune-metabolic hypothesis. Nutrients. 2020;12(8):2444. doi:10.3390/nu12082444
  35. Libby P. Inflammation in atherosclerosis: No longer a theory. Clin Chem. 2021;67(1):131–142. doi:10.1093/clinchem/hvaa275
  36. Santoro L, Ferraro PM, Nesci A, et al. Neutrophil-to-lymphocyte ratio but not monocyte-to-HDL cholesterol ratio nor platelet-to-lymphocyte ratio correlates with early stages of lower extremity arterial disease: An ultrasonographic study. Eur Rev Med Pharmacol Sci. 2021;25(9):3453–3459. doi:10.26355/eurrev_202105_25826
  37. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, et al. Pre-operative systemic inflammatory response index influences long-term survival rate in off-pump surgical revascularization. PLoS One. 2022;17(12):e0276138. doi:10.1371/journal.pone.0276138
  38. Si Y, Liu J, Shan W, et al. Association of lymphocyte-to-monocyte ratio with total coronary plaque burden in patients with coronary artery disease. Coron Artery Dis. 2020;31(7):650–655. doi:10.1097/MCA.0000000000000857
  39. Olasińska-Wiśniewska A, Urbanowicz T, Grodecki K, et al. Neutrophil-to-lymphocyte ratio as a predictor of inflammatory response in patients with acute kidney injury after transcatheter aortic valve implantation. Adv Clin Exp Med. 2022;31(9):937–945. doi:10.17219/acem/149229
  40. Çırakoğlu ÖF, Yılmaz AS. Systemic immune-inflammation index is associated with increased carotid intima-media thickness in hypertensive patients. Clin Exp Hypertens. 2021;43(6):565–571. doi:10.1080/10641963.2021.1916944
  41. Aydın C, Engin M. The value of inflammation indexes in predicting patency of saphenous vein grafts in patients with coronary artery bypass graft surgery. Cureus. 2021;13(7):e16646. doi:10.7759/cureus.16646
  42. Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, et al. Neutrophil counts, neutrophil-to-lymphocyte ratio, and systemic inflammatory response index (SIRI) predict mortality after off-pump coronary artery bypass surgery. Cells. 2022;11(7):1124. doi:10.3390/cells11071124
  43. Liu H, Yao Y, Wang Y, et al. Association between high-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2 and carotid atherosclerosis: A cross-sectional study. J Cell Mol Med. 2018;22(10):5145–5150. doi:10.1111/jcmm.13803
  44. Boaz M, Katzir Z, Schwartz D, et al. Effect of sevelamer hydrochloride exposure on carotid intima media thickness in hemodialysis patients. Nephron Clin Pract. 2010;117(2):c83–c88. doi:10.1159/000319654
  45. Schmidt R, Schmidt H, Pichler M, et al. C-reactive protein, carotid atherosclerosis, and cerebral small-vessel disease: Results of the Austrian Stroke Prevention Study. Stroke. 2006;37(12):2910–2916. doi:10.1161/01.STR.0000248768.40043.f9
  46. Fittipaldi S, Pini R, Pasquinelli G, et al. High sensitivity C-reactive protein and vascular endothelial growth factor as indicators of carotid plaque vulnerability. J Cardiovasc Surg (Torino). 2016;57(6):861–871. PMID:24647324.
  47. van der Veen BS, de Winther MPJ, Heeringa P. Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal. 2009;11(11):2899–2937. doi:10.1089/ars.2009.2538
  48. Binder HM, Maeding N, Wolf M, et al. Scalable enrichment of immunomodulatory human acute myeloid leukemia cell line-derived extracellular vesicles. Cells. 2021;10(12):3321. doi:10.3390/cells10123321
  49. Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A. Consequences of total and subtotal myeloperoxidase deficiency: Risk or benefit? Acta Haematol. 2000;104(1):10–15. doi:10.1159/000041062
  50. Marchetti C, Patriarca P, Solero GP, Baralle FE, Romano M. Genetic characterization of myeloperoxidase deficiency in Italy. Hum Mutat. 2004;23(5):496–505. doi:10.1002/humu.20027
  51. Malle E, Buch T, Grone HJ. Myeloperoxidase in kidney disease. Kidney Int. 2003;64(6):1956–1967. doi:10.1046/j.1523-1755.2003.00336.x
  52. Chevrier I, Tregouet DA, Massonnet-Castel S, Beaune P, Loriot MA. Myeloperoxidase genetic polymorphisms modulate human neutrophil enzyme activity: Genetic determinants for atherosclerosis? Atherosclerosis. 2006;188(1):150–154. doi:10.1016/j.atherosclerosis.2005.10.012
  53. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021;2021:9999612. doi:10.1155/2021/9999612
  54. Hoy A, Leininger-Muller B, Poirier O, et al. Myeloperoxidase polymorphisms in brain infarction: Association with infarct size and functional outcome. Atherosclerosis. 2003;167(2):223–230. doi:10.1016/S0021-9150(02)00041-2
  55. Lee LE, Pyo JY, Ahn SS, Song JJ, Park Y, Lee S. Clinical significance of large unstained cell count in estimating the current activity of antineutrophil cytoplasmic antibody-associated vasculitis. Int J Clin Pract. 2021;75(10):e14512. doi:10.1111/ijcp.14512
  56. Iritani BM, Delrow J, Grandori C, et al. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J. 2002;21(18):4820–4830. doi:10.1093/emboj/cdf492
  57. van der Valk FM, Bekkering S, Kroon J, et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134(8):611–624. doi:10.1161/CIRCULATIONAHA.116.020838
  58. Fracassi F, Niccoli G, Cosentino N, et al. Human monocyte-derived macrophages: Pathogenetic role in plaque rupture associated to systemic inflammation. Int J Cardiol. 2021;325:1–8. doi:10.1016/j.ijcard.2020.09.071
  59. Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, Straburzyńska-Migaj E, Jemielity M. Neutrophil to lymphocyte ratio as noninvasive predictor of pulmonary vascular resistance increase in congestive heart failure patients: Single-center preliminary report. Adv Clin Exp Med. 2020;29(11):1313–1317. doi:10.17219/acem/126292
  60. Urbanowicz TK, Michalak M, Gąsecka A, et al. A risk score for predicting long-term mortality following off-pump coronary artery bypass grafting. J Clin Med. 2021;10(14):3032–3046. doi:10.3390/jcm10143032
  61. Sadurska E, Zaucha-Prażmo A, Brodzisz A, Kowalczyk J, Ben-Skowronek I. Premature atherosclerosis after treatment for acute lymphoblastic leukemia in childhood. Ann Agric Environ Med. 2018;25(1):71–76. doi:10.5604/12321966.1230680
  62. Korantzopoulos P, Letsas KP, Tse G, Fragakis N, Goudis CA, Liu T. Inflammation and atrial fibrillation: A comprehensive review. J Arrhythm. 2018;34(4):394–401. doi:10.1002/joa3.12077
  63. Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: A novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol. 2022;20(3):145–167. doi:10.1038/s41569-022-00759-w
  64. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–243. doi:10.1038/nrcardio.2015.2
  65. Smukowska-Gorynia A, Perek B, Jemielity M, et al. Neopterin as a predictive biomarker of postoperative atrial fibrillation following coronary artery bypass grafting. Kardiol Pol. 2022;80(9):902–910. doi:10.33963/KP.a2022.0143