Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/159288

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:

Wang S, Zhu YQ, Qian XH, et al. The outcome of ibrutinib-based regimens in relapsed/refractory central nervous system lymphoma and the potential impact of genomic variants [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159288

The outcome of ibrutinib-based regimens in relapsed/refractory central nervous system lymphoma and the potential impact of genomic variants

Shu Wang1,A,B,C,D, Yuqi Zhu2,B,C, Xiaohan Qian1,B,C, Tianling Ding1,C,E, Yan Yuan1,C,E, Yuan Li2,C,E, Hanfeng Wu3,A,B,F, Tong Chen1,A,E,F

1 Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China

2 Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China

3 Department of Neurosurgery, Shanghai Gamma Hospital, China


Background. Relapsed/refractory (r/r) central nervous system lymphoma (CNSL) exhibits aggressive behavior and poor outcomes. As an effective bruton tyrosine kinase (BTK) inhibitor, ibrutinib yields benefits in B-cell malignancies.
Objectives. We aimed to explore the efficacy of ibrutinib in treating r/r CNSL patients, and whether genomic variants impact treatment outcomes.
Material and Methods. The ibrutinib-based regimens in 12 r/r primary CNSL (PCNSL) and 2 secondary CNSL (SCNSL) patients were analyzed retrospectively. The impact of genetic variants on the effects of treatments was examined using whole-exome sequencing (WES) technology.
Results. In PCNSL, the overall response rate was 75%, with median overall survival (OS) not reached (NR) and progression-free survival (PFS) of 4 months. Both SCNSL patients responded to ibrutinib, with median OS NR and PFS of 0.5–1.5 months. Infections were common during ibrutinib therapy (42.86%). The PCNSL patients harboring gene mutations in PIM1, MYD88 and CD79B, and the proximal BCR and nuclear factor kappa B (NF-κB) pathways responded to ibrutinib. Patients who harbored simple genetic variants and those with a low tumor mutation burden (TMB; 2.39–5.56/Mb) responded swiftly and maintained remission for more than 10 months. A patient with a TMB of 11/Mb responded to ibrutinib but continued to experience disease progression. In contrast, patients with complex genomic features, especially extremely high TMB (58.39/Mb), responded poorly to ibrutinib.
Conclusion. Our study demonstrates that ibrutinib-based therapy is effective and relatively safe for the treatment of r/r CNSL. Patients with less genomic complexity, especially with regard to TMB, might benefit more from ibrutinib regimens.

Key words

ibrutinib, tumor mutation burden, central nervous system lymphoma, relapsed/refractory, genomic variants

Graphical abstract

Graphical abstracts

References (37)

  1. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–2418. doi:10.1200/JCO.2017.72.7602
  2. Ferreri AJM, Assanelli A, Crocchiolo R, Ciceri F. Central nervous system dissemination in immunocompetent patients with aggressive lymphomas: Incidence, risk factors and therapeutic options. Hematol Oncol. 2009;27(2):61–70. doi:10.1002/hon.881
  3. Carnevale J, Rubenstein JL. The challenge of primary central nervous system lymphoma. Hematol Oncol Clin North Am. 2016;30(6):1293–1316. doi:10.1016/j.hoc.2016.07.013
  4. Myers DR, Zikherman J, Roose JP. Tonic signals: Why do lymphocytes bother? Trends Immunol. 2017;38(11):844–857. doi:10.1016/
  5. Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–232. doi:10.1038/nrc3702
  6. Lionakis MS, Dunleavy K, Roschewski M, et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell. 2017;31(6):833–843.e5. doi:10.1016/j.ccell.2017.04.012
  7. Grommes C, Tang SS, Wolfe J, et al. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood. 2019;133(5):436–445. doi:10.1182/blood-2018-09-875732
  8. Soussain C, Choquet S, Blonski M, et al. Ibrutinib monotherapy for relapse or refractory primary CNS lymphoma and primary vitreoretinal lymphoma: Final analysis of the phase II ‘proof-of-concept’ iLOC study by the LYmphoma Study Association (LYSA) and the French Oculo-Cerebral lymphoma (LOC) network. Eur J Cancer. 2019;117:121–130. doi:10.1016/j.ejca.2019.05.024
  9. Grommes C, Pastore A, Palaskas N, et al. Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov. 2017;7(9):1018–1029. doi:10.1158/2159-8290.CD-17-0613
  10. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–881. doi:10.1182/blood-2015-10-673236
  11. Phelan JD, Young RM, Webster DE, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560(7718):387–391. doi:10.1038/s41586-018-0290-0
  12. Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551–568.e14. doi:10.1016/j.ccell.2020.03.015
  13. Wilson WH, Wright GW, Huang DW, et al. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell. 2021;39(12):1643–1653.e3. doi:10.1016/j.ccell.2021.10.006
  14. Abrey LE, Batchelor TT, Ferreri AJM, et al. Report of an International Workshop to Standardize Baseline Evaluation and Response Criteria for Primary CNS Lymphoma. J Clin Oncol. 2005;23(22):5034–5043. doi:10.1200/JCO.2005.13.524
  15. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324
  16. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi:10.1101/gr.107524.110
  17. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603
  18. Shen R, Seshan VE. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016;44(16):e131. doi:10.1093/nar/gkw520
  19. Wang S, Li H, Song M, et al. Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genet. 2021;17(5):e1009557. doi:10.1371/journal.pgen.1009557
  20. Abecais G, Auton A, Brooks L, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi:10.1038/nature11632
  21. Zou J, Valiant G, Valiant P, et al. Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects. Nat Commun. 2016;7(1):13293. doi:10.1038/ncomms13293
  22. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D783. doi:10.1093/nar/gkw1121
  23. Devarakonda S, Rotolo F, Tsao MS, et al. Tumor mutation burden as a biomarker in resected non-small-cell lung cancer. J Clin Oncol. 2018;36(30):2995–3006. doi:10.1200/JCO.2018.78.1963
  24. Wong SQ, Li J, Tan AYC, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics. 2014;7(1):23. doi:10.1186/1755-8794-7-23
  25. Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statist Sci. 2001;16(2):101–133. doi:10.1214/ss/1009213286
  26. Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–2350. doi:10.1056/NEJMoa1809697
  27. Lewis KL, Chin CK, Manos K, et al. Ibrutinib for central nervous system lymphoma: The Australasian Lymphoma Alliance/MD Anderson Cancer Center experience. Br J Haematol. 2021;192(6):1049–1053. doi:10.1111/bjh.16946
  28. Lauer EM, Waterhouse M, Braig M, et al. Ibrutinib in patients with relapsed/refractory central nervous system lymphoma: A retrospective single-centre analysis. Br J Haematol. 2020;190(2):e110–e114. doi:10.1111/bjh.16759
  29. Chamoun K, Choquet S, Boyle E, et al. Ibrutinib monotherapy in relapsed/refractory CNS lymphoma: A retrospective case series. Neurology. 2017;88(1):101–102. doi:10.1212/WNL.0000000000003420
  30. Chen F, Pang D, Guo H, et al. Clinical outcomes of newly diagnosed primary CNS lymphoma treated with ibrutinib-based combination therapy: A real-world experience of off-label ibrutinib use. Cancer Med. 2020;9(22):8676–8684. doi:10.1002/cam4.3499
  31. Fan F, Yoo HJ, Stock S, et al. Ibrutinib for improved chimeric antigen receptor T-cell production for chronic lymphocytic leukemia patients. Int J Cancer. 2021;148(2):419–428. doi:10.1002/ijc.33212
  32. Lv L, Sun X, Wu Y, Cui Q, Chen Y, Liu Y. Efficacy and safety of ibrutinib in central nervous system lymphoma: A PRISMA-compliant single-arm meta-analysis. Front Oncol. 2021;11:707285. doi:10.3389/fonc.2021.707285
  33. Ghez D, Calleja A, Protin C, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood. 2018;131(17):1955–1959. doi:10.1182/blood-2017-11-818286
  34. Tillman BF, Pauff JM, Satyanarayana G, Talbott M, Warner JL. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur J Haematol. 2018;100(4):325–334. doi:10.1111/ejh.13020
  35. Kandoth C, Schultz N, Cherniack AD, et al; The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi:10.1038/nature12113
  36. Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016;9(1):80. doi:10.1186/s13045-016-0313-y
  37. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–2549. doi:10.1182/blood-2013-06-507947