Advances in Clinical and Experimental Medicine
Ahead of print
doi: 10.17219/acem/159288
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cite as:
Wang S, Zhu YQ, Qian XH, et al. The outcome of ibrutinib-based regimens in relapsed/refractory central nervous system lymphoma and the potential impact of genomic variants [published online as ahead of print on March 7, 2023]. Adv Clin Exp Med. 2023. doi:10.17219/acem/159288
The outcome of ibrutinib-based regimens in relapsed/refractory central nervous system lymphoma and the potential impact of genomic variants
1 Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
2 Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
3 Department of Neurosurgery, Shanghai Gamma Hospital, China
Abstract
Background. Relapsed/refractory (r/r) central nervous system lymphoma (CNSL) exhibits aggressive behavior and poor outcomes. As an effective bruton tyrosine kinase (BTK) inhibitor, ibrutinib yields benefits in B-cell malignancies.
Objectives. We aimed to explore the efficacy of ibrutinib in treating r/r CNSL patients, and whether genomic variants impact treatment outcomes.
Material and Methods. The ibrutinib-based regimens in 12 r/r primary CNSL (PCNSL) and 2 secondary CNSL (SCNSL) patients were analyzed retrospectively. The impact of genetic variants on the effects of treatments was examined using whole-exome sequencing (WES) technology.
Results. In PCNSL, the overall response rate was 75%, with median overall survival (OS) not reached (NR) and progression-free survival (PFS) of 4 months. Both SCNSL patients responded to ibrutinib, with median OS NR and PFS of 0.5–1.5 months. Infections were common during ibrutinib therapy (42.86%). The PCNSL patients harboring gene mutations in PIM1, MYD88 and CD79B, and the proximal BCR and nuclear factor kappa B (NF-κB) pathways responded to ibrutinib. Patients who harbored simple genetic variants and those with a low tumor mutation burden (TMB; 2.39–5.56/Mb) responded swiftly and maintained remission for more than 10 months. A patient with a TMB of 11/Mb responded to ibrutinib but continued to experience disease progression. In contrast, patients with complex genomic features, especially extremely high TMB (58.39/Mb), responded poorly to ibrutinib.
Conclusion. Our study demonstrates that ibrutinib-based therapy is effective and relatively safe for the treatment of r/r CNSL. Patients with less genomic complexity, especially with regard to TMB, might benefit more from ibrutinib regimens.
Key words
ibrutinib, tumor mutation burden, central nervous system lymphoma, relapsed/refractory, genomic variants
Graphical abstract

References (37)
- Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–2418. doi:10.1200/JCO.2017.72.7602
- Ferreri AJM, Assanelli A, Crocchiolo R, Ciceri F. Central nervous system dissemination in immunocompetent patients with aggressive lymphomas: Incidence, risk factors and therapeutic options. Hematol Oncol. 2009;27(2):61–70. doi:10.1002/hon.881
- Carnevale J, Rubenstein JL. The challenge of primary central nervous system lymphoma. Hematol Oncol Clin North Am. 2016;30(6):1293–1316. doi:10.1016/j.hoc.2016.07.013
- Myers DR, Zikherman J, Roose JP. Tonic signals: Why do lymphocytes bother? Trends Immunol. 2017;38(11):844–857. doi:10.1016/j.it.2017.06.010
- Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–232. doi:10.1038/nrc3702
- Lionakis MS, Dunleavy K, Roschewski M, et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell. 2017;31(6):833–843.e5. doi:10.1016/j.ccell.2017.04.012
- Grommes C, Tang SS, Wolfe J, et al. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood. 2019;133(5):436–445. doi:10.1182/blood-2018-09-875732
- Soussain C, Choquet S, Blonski M, et al. Ibrutinib monotherapy for relapse or refractory primary CNS lymphoma and primary vitreoretinal lymphoma: Final analysis of the phase II ‘proof-of-concept’ iLOC study by the LYmphoma Study Association (LYSA) and the French Oculo-Cerebral lymphoma (LOC) network. Eur J Cancer. 2019;117:121–130. doi:10.1016/j.ejca.2019.05.024
- Grommes C, Pastore A, Palaskas N, et al. Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov. 2017;7(9):1018–1029. doi:10.1158/2159-8290.CD-17-0613
- Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–881. doi:10.1182/blood-2015-10-673236
- Phelan JD, Young RM, Webster DE, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560(7718):387–391. doi:10.1038/s41586-018-0290-0
- Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551–568.e14. doi:10.1016/j.ccell.2020.03.015
- Wilson WH, Wright GW, Huang DW, et al. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell. 2021;39(12):1643–1653.e3. doi:10.1016/j.ccell.2021.10.006
- Abrey LE, Batchelor TT, Ferreri AJM, et al. Report of an International Workshop to Standardize Baseline Evaluation and Response Criteria for Primary CNS Lymphoma. J Clin Oncol. 2005;23(22):5034–5043. doi:10.1200/JCO.2005.13.524
- Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324
- McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi:10.1101/gr.107524.110
- Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603
- Shen R, Seshan VE. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016;44(16):e131. doi:10.1093/nar/gkw520
- Wang S, Li H, Song M, et al. Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genet. 2021;17(5):e1009557. doi:10.1371/journal.pgen.1009557
- Abecais G, Auton A, Brooks L, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi:10.1038/nature11632
- Zou J, Valiant G, Valiant P, et al. Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects. Nat Commun. 2016;7(1):13293. doi:10.1038/ncomms13293
- Forbes SA, Beare D, Boutselakis H, et al. COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D783. doi:10.1093/nar/gkw1121
- Devarakonda S, Rotolo F, Tsao MS, et al. Tumor mutation burden as a biomarker in resected non-small-cell lung cancer. J Clin Oncol. 2018;36(30):2995–3006. doi:10.1200/JCO.2018.78.1963
- Wong SQ, Li J, Tan AYC, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics. 2014;7(1):23. doi:10.1186/1755-8794-7-23
- Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statist Sci. 2001;16(2):101–133. doi:10.1214/ss/1009213286
- Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–2350. doi:10.1056/NEJMoa1809697
- Lewis KL, Chin CK, Manos K, et al. Ibrutinib for central nervous system lymphoma: The Australasian Lymphoma Alliance/MD Anderson Cancer Center experience. Br J Haematol. 2021;192(6):1049–1053. doi:10.1111/bjh.16946
- Lauer EM, Waterhouse M, Braig M, et al. Ibrutinib in patients with relapsed/refractory central nervous system lymphoma: A retrospective single-centre analysis. Br J Haematol. 2020;190(2):e110–e114. doi:10.1111/bjh.16759
- Chamoun K, Choquet S, Boyle E, et al. Ibrutinib monotherapy in relapsed/refractory CNS lymphoma: A retrospective case series. Neurology. 2017;88(1):101–102. doi:10.1212/WNL.0000000000003420
- Chen F, Pang D, Guo H, et al. Clinical outcomes of newly diagnosed primary CNS lymphoma treated with ibrutinib-based combination therapy: A real-world experience of off-label ibrutinib use. Cancer Med. 2020;9(22):8676–8684. doi:10.1002/cam4.3499
- Fan F, Yoo HJ, Stock S, et al. Ibrutinib for improved chimeric antigen receptor T-cell production for chronic lymphocytic leukemia patients. Int J Cancer. 2021;148(2):419–428. doi:10.1002/ijc.33212
- Lv L, Sun X, Wu Y, Cui Q, Chen Y, Liu Y. Efficacy and safety of ibrutinib in central nervous system lymphoma: A PRISMA-compliant single-arm meta-analysis. Front Oncol. 2021;11:707285. doi:10.3389/fonc.2021.707285
- Ghez D, Calleja A, Protin C, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood. 2018;131(17):1955–1959. doi:10.1182/blood-2017-11-818286
- Tillman BF, Pauff JM, Satyanarayana G, Talbott M, Warner JL. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur J Haematol. 2018;100(4):325–334. doi:10.1111/ejh.13020
- Kandoth C, Schultz N, Cherniack AD, et al; The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi:10.1038/nature12113
- Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016;9(1):80. doi:10.1186/s13045-016-0313-y
- Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–2549. doi:10.1182/blood-2013-06-507947