Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 166.39
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/147891

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

MiR-218 promotes oxidative stress and inflammatory response by inhibiting SPRED2-mediated autophagy in HG-induced HK-2 cells

Lanfang Fu1,A,D,F, Xinxin Huang1,B,C, Juyun Zhang1,C,E, Zhu Lin1,C,E, Guijun Qin2,A,E,F

1 Department of Endocrinology, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine, China

2 Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China


Background. Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus (DM). MicroRNA (miR)-218 is associated with the development of diabetes. Besides, sprouty-related EVH1 domain containing 2 (SPRED2), the downstream target of miR-218, is involved in insulin resistance and inflammation.
Objectives. Since inflammation plays a key role in DN, and SPRED2 is known to facilitate cell autophagy, the present study aimed to investigate the role and molecular mechanism of miR-218 and SPRED2-mediated autophagy in high glucose (HG)-induced renal tubular epithelial cells using an in vitro model.
Material and Methods. The HK-2 cells were cultured in 5.5 mM or 30 mM D-glucose medium. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-218 and SPRED2. Western blotting was performed to calculate the levels of SPRED2, inflammatory cytokines, autophagy-related and apoptosis-related proteins. Reactive oxygen species (ROS) level was evaluated using cellular ROS assay kit, superoxide dismutase (SOD) activity was detected using SOD activity assay kit, and malondialdehyde (MDA) content was measured using lipid peroxidation. The levels of interleukin (IL)-1β, IL-6, IL-4, and tumor necrosis factor alpha (TNF-α) were detected with enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was evaluated using flow cytometry analysis. The targeting relationship between miR-218 and SPRED2 was identified with a luciferase reporter. The LC3-II expression was detected with immunofluorescence.
Results. The miR-218 expression was upregulated and SPRED2 expression was downregulated in HG-induced HK-2 cells. The miR-218 was proven to target SPRED2 and negatively regulate SPRED2 expression. Besides, downregulated miR-218 alleviated inflammatory response, oxidative stress and cell apoptosis, but aggravated autophagy. We also showed that downregulated SPRED2 reversed the effect of miR-218 on inflammation, cell apoptosis and autophagy in HG-induced HK-2 cells.
Conclusion. The miR-218 can promote oxidative stress and inflammatory response in HG-induced renal tubular epithelial cells by inhibiting SPRED2-mediated autophagy. This study might bring novel understanding for molecular mechanism of DN.

Key words

miR-218, renal tubular epithelial cell, autophagy, SPRED2, high glucose

References (51)

  1. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: A review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev. 2017;33(2):e2841. doi:10.1002/dmrr.2841
  2. Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(S1):3–15. doi:10.1111/dom.14007
  3. Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, et al. Inflammatory targets in diabetic nephropathy. J Clin Med. 2020;9(2):458. doi:10.3390/jcm9020458
  4. Imasawa T, Obre E, Bellance N, et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 2017;31(1):294–307. doi:10.1096/fj.201600293r
  5. Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: An insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets. 2019;23(7):579–591. doi:10.1080/14728222.2019.1624721
  6. Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;2018:1–13. doi:10.1155/2018/1875870
  7. Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in diabetic nephropathy: From biomarkers to therapy. Curr Diab Rep. 2016;16(3):35. doi:10.1007/s11892-016-0724-8
  8. Wang LP, Gao YZ, Song B, et al. MicroRNAs in the progress of diabetic nephropathy: A systematic review and meta-analysis. Evid Based Complement Alternat Med. 2019;2019:1–9. doi:10.1155/2019/3513179
  9. Kim H, Bae YU, Jeon JS, et al. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med. 2019;17(1):236. doi:10.1186/s12967-019-1983-3
  10. Wang X, Liu J, Yin W, et al. miR-218 expressed in endothelial progenitor cells contributes to the development and repair of the kidney microvasculature. Am J Pathol. 2020;190(3):642–659. doi:10.1016/j.ajpath.2019.11.014
  11. Mao P, Liu X, Wen Y, Tang L, Tang Y. LncRNA SNHG12 regulates ox-LDL-induced endothelial cell injury by the miR-218-5p/IGF2 axis in atherosclerosis. Cell Cycle. 2021;20(16):1561–1577. doi:10.1080/15384101.2021.1953755
  12. Kong Q, Guo X, Guo Z, Su T. Urinary exosome miR-424 and miR-218 as biomarkers for type 1 diabetes in children. Clin Lab. 2019;65(6). doi:10.7754/Clin.Lab.2018.180921
  13. Zhang JY, Gong YL, Li CJ, Qi Q, Zhang QM, Yu DM. Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis. Am J Transl Res. 2016;8(6):2650–2658. PMID:27398148. PMCID:PMC4931159.
  14. Wang H, Liu S, Kong F, et al. Spred2 inhibits epithelial–mesenchymal transition of colorectal cancer cells by impairing ERK signaling. Oncol Rep. 2020;44(1):174–185. doi:10.3892/or.2020.7586
  15. Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38(1):393. doi:10.1186/s13046-019-1408-4
  16. Motta M, Fasano G, Gredy S, et al. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet. 2021;108(11):2112–2129. doi:10.1016/j.ajhg.2021.09.007
  17. Ohkura T, Yoshimura T, Fujisawa M, et al. Spred2 regulates high fat diet-induced adipose tissue inflammation, and metabolic abnormalities in mice. Front Immunol. 2019;10:17. doi:10.3389/fimmu.2019.00017
  18. Ullrich M, Aßmus B, Augustin AM, et al. SPRED2 deficiency elicits cardiac arrhythmias and premature death via impaired autophagy. J Mol Cell Cardiol. 2019;129:13–26. doi:10.1016/j.yjmcc.2019.01.023
  19. Kawara A, Mizuta R, Fujisawa M, et al. Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin. Sci Rep. 2020;10(1):16490. doi:10.1038/s41598-020-73752-3
  20. Okada M, Yamane M, Yamamoto S, et al. SPRED2 deficiency may lead to lung ischemia–reperfusion injury via ERK1/2 signaling pathway activation. Surg Today. 2018;48(12):1089–1095. doi:10.1007/s00595-018-1696-x
  21. Xu Y, Ito T, Fushimi S, et al. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice. PLoS ONE. 2014;9(10):e108914. doi:10.1371/journal.pone.0108914
  22. Hong GL, Kim KH, Lee CH, Kim TW, Jung JY. NQO1 deficiency aggravates renal injury by dysregulating Vps34/ATG14L complex during autophagy initiation in diabetic nephropathy. Antioxidants. 2021;10(2):333. doi:10.3390/antiox10020333
  23. An X, Liao G, Chen Y, et al. Intervention for early diabetic nephropathy by mesenchymal stem cells in a preclinical nonhuman primate model. Stem Cell Res Ther. 2019;10(1):363. doi:10.1186/s13287-019-1401-z
  24. Liu L, Chen H, Yun J, et al. miRNA-483–5p targets HDCA4 to regulate renal tubular damage in diabetic nephropathy. Horm Metab Res. 2021;53(8):562–569. doi:10.1055/a-1480-7519
  25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  26. Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends Endocrinol Metabol. 2016;27(11):820–830. doi:10.1016/j.tem.2016.07.002
  27. Moreno JA, Gomez-Guerrero C, Mas S, et al. Targeting inflammation in diabetic nephropathy: A tale of hope. Expert Opin Investig Drugs. 2018;27(11):917–930. doi:10.1080/13543784.2018.1538352
  28. Umanath K, Lewis JB. Update on diabetic nephropathy: Core curriculum 2018. Am J Kidney Dis. 2018;71(6):884–895. doi:10.1053/j.ajkd.2017.10.026
  29. Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med. 2018;116:50–63. doi:10.1016/j.freeradbiomed.2017.12.040
  30. Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;2018:1–13. doi:10.1155/2018/1875870
  31. Koch EAT, Nakhoul R, Nakhoul F, Nakhoul N. Autophagy in diabetic nephropathy: A review. Int Urol Nephrol. 2020;52(9):1705–1712. doi:10.1007/s11255-020-02545-4
  32. Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants. 2020;9(10):925. doi:10.3390/antiox9100925
  33. Guo J, Li J, Zhao J, et al. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep. 2017;7(1):2314. doi:10.1038/s41598-017-01027-5
  34. Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J Cell Physiol. 2020;235(4):3362–3371. doi:10.1002/jcp.29224
  35. Su SS, Li BP, Li CL, Xiu FR, Wang DY, Zhang FR. Downregulation of MiR-218 can alleviate high-glucose-induced renal proximal tubule injury by targeting GPRC5A. Biosci Biotechnol Biochem. 2020;84(6):1123–1130. doi:10.1080/09168451.2020.1717330
  36. Yang H, Wang Q, Li S. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1. Biochem Biophys Res Commun. 2016;471(4):582–588. doi:10.1016/j.bbrc.2016.02.028
  37. Zhang YL, Wang JM, Yin H, Wang SB, He CL, Liu J. DACH1, a novel target of miR-218, participates in the regulation of cell viability, apoptosis, inflammatory response, and epithelial–mesenchymal transition process in renal tubule cells treated by high-glucose. Ren Fail. 2020;42(1):463–473. doi:10.1080/0886022X.2020.1762647
  38. Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J Cell Physiol. 2020;235(4):3362–3371. doi:10.1002/jcp.29224
  39. Ebrahim N, Ahmed I, Hussien N, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells. 2018;7(12):226. doi:10.3390/cells7120226
  40. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177(7):1682–1699. doi:10.1016/j.cell.2019.05.026
  41. Harris J, Lang T, Thomas JPW, Sukkar MB, Nabar NR, Kehrl JH. Autophagy and inflammasomes. Mol Immunol. 2017;86:10–15. doi:10.1016/j.molimm.2017.02.013
  42. Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20(10):1110–1117. doi:10.1038/s41556-018-0201-5
  43. Liu WJ, Huang WF, Ye L, et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur Rev Med Pharmacol Sci. 2018;22(10):3182–3189. doi:10.26355/eurrev_201805_15079
  44. Chen DD, Xu R, Zhou JY, et al. Cordyceps militaris polysaccharides exerted protective effects on diabetic nephropathy in mice via regulation of autophagy. Food Funct. 2019;10(8):5102–5114. doi:10.1039/C9FO00957D
  45. Wei W, An XR, Jin SJ, Li XX, Xu M. Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephro­pathy. Sci Rep. 2018;8(1):9. doi:10.1038/s41598-017-18427-2
  46. Zhao Y, Zhang W, Jia Q, et al. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front Physiol. 2019;9:1939. doi:10.3389/fphys.2018.01939
  47. Kitada M, Ogura Y, Monno I, Koya D. Regulating autophagy as a therapeutic target for diabetic nephropathy. Curr Diab Rep. 2017;17(7):53. doi:10.1007/s11892-017-0879-y
  48. Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–767. doi:10.2337/db15-0473
  49. Cui C, Han S, Tang S, et al. The autophagy regulatory molecule CSRP3 interacts with LC3 and protects against muscular dystrophy. Int J Mol Sci. 2020;21(3):749. doi:10.3390/ijms21030749
  50. Jiang K, Liu M, Lin G, et al. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death. Oncotarget. 2016;7(18):25652–25667. doi:10.18632/oncotarget.8357
  51. Chen D, Li C, Lv R. MicroRNA 218 aggravates H2O2 induced damage in PC12 cells via spred2 mediated autophagy. Exp Ther Med. 2021;22(6):1352. doi:10.3892/etm.2021.10787