Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.727
Index Copernicus  – 166.39
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/146320

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

The influence of mosapride on gut microbiota of carbon tetrachloride-induced cirrhosis rats based on 16S rRNA gene sequencing

Dongya Chen1,A,D,F, Jingfang Xiong2,B,D,F, Hui Feng1,B,D,F, Yihui Liu1,B,D,F, Jianjun Xu1,C,D,F, Hong Xu1,D,E,F

1 Department of Gastroenterology and Hepatology, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China

2 Department of Geriatrics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China


Background. Mosapride significantly improves intestinal motility in liver cirrhosis, ultimately leading to the reduction in plasma endotoxin levels and bacterial translocation.
Objectives. To investigate the effects of mosapride on intestinal microecology in cirrhotic rats and its potential mechanisms.
Material and Methods. Forty-five healthy male Sprague–Dawley rats that were pathogen-free (weight 200–220 g) were randomly divided into a control group (n = 15), model group (n = 15) and mosapride group (n = 15). Then, the pathological changes in the liver and intestine were determined through tissue staining and using transmission electron microscope (TEM). Bacterial translocation was examined. High throughput 16S rRNA sequencing was performed to determine the changes of gut microbiota in each group.
Results. Compared with the model group, mosapride treatment induced no attenuation in hepatic morphology and pathology changes. The TEM indicated no differences in intestinal structure in both groups. There was a significant decline in the rate of gut microbiota translocation in the mosapride group compared with the model group. There were intestinal microbiota changes in the mosapride group compared with that of the model group, including Bacteroidetes, Prevotellaceae, Alloprevotella, Ruminiclostridium, Negativicutes, Selenomonadales, Veillonellaceae, Anaerovibrio, Campylobacterales, Epsilonbacteraeota, Helicobacter, Oscillibacter, Verrucomicrobiales, Akkermansia, Intestinimonas, Eubacterium, Clostridiaceae, Clostridium, Bacteroides, Tyzzerella, Actinobacteria, and Bifidobacteriales. Among these bacteria, Alloprevotella showed a strong correlation with the other bacteria.
Conclusion. Taken together, we concluded that mosapride may reduce intestinal bacterial translocation through regulating the gut microbiota in rats with hepatic cirrhosis.

Key words

liver cirrhosis, mosapride, bacterial translocation, gut microbiota, 16S rRNA

References (41)

  1. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019;65:37–55. doi:10.1016/j.mam.2018.09.002
  2. Piano S, Singh V, Caraceni P, et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology. 2019;156(5):1368–1380.e10. doi:10.1053/j.gastro.2018.12.005
  3. Yuan LT, Chuah SK, Yang SC, et al. Multiple bacterial infections increase the risk of hepatic encephalopathy in patients with cirrhosis. PLoS One. 2018;13(5):e0197127. doi:10.1371/journal.pone.0197127
  4. Suk KT, Kim MY, Jeong SW, Jang JY, Jang YO, Baik SK. Impact of bacterial translocation on hepatopulmonary syndrome: A prospective observational study. Dig Dis Sci. 2018;63(1):248–256. doi:10.1007/s10620-017-4868-4
  5. Mücke MM, Rumyantseva T, Mücke VT, et al. Bacterial infection-triggered acute-on-chronic liver failure is associated with increased mortality. Liver Int. 2018;38(4):645–653. doi:10.1111/liv.13568
  6. Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes. 2020;11(2):217–230. doi:10.1080/19490976.2019.1629236
  7. Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: Physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12(7):641–656. doi:10.1080/17474124.2018.1481747
  8. Muñoz L, Borrero MJ, Úbeda M, et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology. 2019;70(3):925–938. doi:10.1002/hep.30349
  9. Ghosh G, Jesudian AB. Small intestinal bacterial overgrowth in patients with cirrhosis. J Clin Exp Hepatol. 2019;9(2):257–267. doi:10.1016/j.jceh.2018.08.006
  10. Sánchez E, Casafont F, Guerra A, de Benito I, Pons-Romero F. Role of intestinal bacterial overgrowth and intestinal motility in bacterial translocation in experimental cirrhosis. Rev Esp Enferm Dig. 2005;97(11):805–814. doi:10.4321/s1130-01082005001100005
  11. Aoki K, Kamiyama H, Masuda K, Togashi Y, Terauchi Y. Mosapride citrate, a 5-HT₄ receptor agonist, increased the plasma active and total glucagon-like peptide-1 levels in non-diabetic men. Endocr J. 2013;60(4):493–499. PMID:23257734.
  12. Endo J, Nomura M, Morishita S, et al. Influence of mosapride citrate on gastric motility and autonomic nervous function: Evaluation by spectral analyses of heart rate and blood pressure variabilities, and by electrogastrography. J Gastroenterol. 2002;37(11):888–895. doi:10.1007/s005350200150
  13. Xu H, Xiong J, Xu J, et al. Mosapride stabilizes intestinal microbiota to reduce bacterial translocation and endotoxemia in CCl(4)-induced cirrhotic rats. Dig Dis Sci. 2017;62(10):2801–2811. doi:10.1007/s10620-017-4704-x
  14. Institute of Laboratory Animal Research; Committee on Care, Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. Bethesda, USA: US Department of Health and Human Services, Public Health Service, National Institutes of Health; 1986.
  15. Dong A, Mueller P, Yang F, Yang L, Morris A, Smyth SS. Direct thrombin inhibition with dabigatran attenuates pressure overload-induced cardiac fibrosis and dysfunction in mice. Thromb Res. 2017;159:58–64. doi:10.1016/j.thromres.2017.09.016
  16. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9
  17. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869
  18. Chao A. Nonparametric estimation of the number of classes in a population. Scand J Statist. 1984:265–270. Accessed August 4, 2021.
  19. Pan HY, Chao A, Foissner W. A nonparametric lower bound for the number of species shared by multiple communities. J Agric Biol Environ Stat. 2009;14(4):452–468. doi:10.1198/jabes.2009.07113
  20. Good IJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40(3–4):237–264. doi:10.2307/2333344
  21. Spellerberg IF, Fedor PJ. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ index. Glob Ecol Biogeogr. 2003;12(3):177–179. doi:10.1046/j.1466-822X.2003.00015.x
  22. Simpson EH. Measurement of diversity. Nature. 1949;163(4148):688. doi:10.1038/163688a0
  23. Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi:10.1128/aem.71.12.8228-8235.2005
  24. Clarke KR. Non‐parametric multivariate analyses of changes in community structure. Austral Ecol. 1993;18(1):117–143. doi:10.1111/j.1442-9993.1993.tb00438.x
  25. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60
  26. Ward T, Larson J, Meulemans J, et al. BugBase predicts organism-level microbiome phenotypes. BioRxiv. 2017:133462. doi:10.1101/133462
  27. Okubo H, Nakatsu Y, Sakoda H, et al. Mosapride citrate improves nonalcoholic steatohepatitis with increased fecal lactic acid bacteria and plasma glucagon-like peptide-1 level in a rodent model. Am J Physiol Gastrointest Liver Physiol. 2015;308(2):G151–G158. doi:10.1152/ajpgi.00198.2014
  28. Zuo K, Li J, Li K, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience. 2019;8(6):giz058. doi:10.1093/gigascience/giz058
  29. Yin J, Liao SX, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc. 2015;4(11):e002699. doi:10.1161/jaha.115.002699
  30. Sydenham TV, Arpi M, Klein K, Justesen US. Four cases of bacteremia caused by Oscillibacter ruminantium, a newly described species. J Clin Microbiol. 2014;52(4):1304–1307. doi:10.1128/jcm.03128-13
  31. Sun Y, Chen Q, Lin P, et al. Characteristics of gut microbiota in patients with rheumatoid arthritis in Shanghai, China. Front Cell Infect Microbiol. 2019;9:369. doi:10.3389/fcimb.2019.00369
  32. Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206. doi:10.3389/fcimb.2019.00206
  33. Ganly I, Yang L, Giese RA, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer. 2019;145(3):775–784. doi:10.1002/ijc.32152
  34. Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020;9:476. doi:10.3389/fcimb.2019.00476
  35. Qiao S, Bao L, Wang K, et al. Activation of a specific gut bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis. Cell Rep. 2020;32(6):108005. doi:10.1016/j.celrep.2020.108005
  36. Liu J, Hao W, He Z, et al. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct. 2019;10(5):2847–2860. doi:10.1039/c8fo02051e
  37. Wu DN, Guan L, Jiang YX, et al. Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovasc Diagn Ther. 2019;9(6):545–560. doi:10.21037/cdt.2019.12.04
  38. Rocafort M, Noguera-Julian M, Rivera J, et al. Evolution of the gut microbiome following acute HIV-1 infection. Microbiome. 2019;7(1):73. doi:10.1186/s40168-019-0687-5
  39. Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018;27(6):1222–1235.e6. doi:10.1016/j.cmet.2018.05.006
  40. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017;106:171–181. doi:10.1016/j.micpath.2016.02.005
  41. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–9071. doi:10.1073/pnas.1219451110