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Abstract

Third-generation cephalosporins have been widely used in clinical practice for many years. Among them,
cefotaxime and ceftriaxone are the most commonly administered agents. Despite their nearly identical spectra
of antibacterial activity, these antibiotics differ substantially in their pharmacokinetic and pharmacodynamic
profiles. Such dissimilarities may influence the course and outcome of antimicrobial therapy. Furthermore,
several additional factors can affect the antimicrobial efficacy of these agents. Cefotaxime and ceftriaxone
exhibit markedly different degrees of albumin binding — approx. 25—40% and 95%, respectively. Hypoalbu-
minemia increases the proportion of the free, pharmacologically active fraction of the drug in the bloodstream;
however, it may also lead to prolonged exposure to sub-MIC concentrations. This situation not only reduces
the likelihood of therapeutic success but also increases the risk of selecting resistant bacterial strains. Although
cefotaxime and ceftriaxone share a similar antibacterial spectrum, antibiotic selection should always be
individualized according to the patient’s clinical status and treatment context. A direct comparison of their
clinical efficacy undoubtedly warrants further investigation, as suggested by the clear differences in their
pharmacokinetic profiles.
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Highlights

for invasive bacterial infections.

tibiotic therapy in clinical practice.

» Pharmacokinetic differences between ceftriaxone and cefotaxime may play a critical role in optimizing treatment

+ Cefotaxime may provide therapeutic benefits over ceftriaxone in the management of sepsis and septic shock.

+ The pharmacokinetic properties of third-generation cephalosporins — particularly ceftriaxone and cefotaxime
— may influence the development of resistance mechanisms in Gram-negative bacilli, including Enterobacterales.

« Variations in pharmacokinetics between ceftriaxone and cefotaxime may lead to premature modification of an-

Introduction

Third-generation cephalosporins are used for both em-
pirical and targeted treatment of community-acquired
infections, but also those associated with hospitalization.
As representatives of B-lactam antibiotics, they are char-
acterized by excellent tissue penetration, including the ca-
pability to penetrate bones, joints, lungs, middle ear, and
cerebrospinal fluid, achieving therapeutic concentrations
relatively quickly in these areas. The efficacy of cephalo-
sporins and other -lactam antibiotics depends on the du-
ration during which the drug concentration remains above
the minimum inhibitory concentration (MIC) of the patho-
gen (fT > MIC).! Both in vitro and in vivo animal studies
have demonstrated that fT > MIC is the pharmacodynamic
parameter that best characterizes antibiotic efficacy, de-
fined as bactericidal activity against the target bacteria.!~
Therefore, some B-lactam antibiotics are administered
by continuous infusion to optimize their therapeutic effect.

Interesting findings arise from the DALI (Defining An-
tibiotic Levels in Intensive Care Patients) study. The au-
thors assessed the therapeutic efficacy of f-lactam an-
tibiotic treatment in patients achieving different levels
of fT > MIC, specifically 50% and 100% for the defined
endpoint fT > MIC and fT > 4 x MIC. The best therapeu-
tic outcomes were achieved in the group of patients with
the highest exposure time to the B-lactam antibiotic.?

The most commonly used third-generation cephalo-
sporins are cefotaxime and ceftriaxone. Susceptibility
to ceftriaxone can be inferred based on the sensitivity de-
termined using cefotaxime.* Despite the nearly overlapping
spectrum of antibacterial activity of both antibiotics, there
are numerous differences in their pharmacokinetic and
pharmacodynamic profiles (PK/PD).>~” These dissimilari-
ties can affect the course of antimicrobial therapy.?

Pharmacokinetics is the study of a drug’s disposition
within the body. It describes the processes of absorption,
distribution, metabolism and excretion of the drug. In con-
trast, pharmacodynamics focuses on examining the drug’s
effects on the body.

Furthermore, both ceftriaxone and cefotaxime can induce
the production of B-lactamases. However, the pharmacoki-
netic profile and metabolic properties of cefotaxime suggest

a lower potential for p-lactamase induction. Serum protein
saturation occurs more rapidly with cefotaxime, leading
to a faster establishment of equilibrium between albumin
and the drug’s free (biologically active) fraction. On the other
hand, ceftriaxone has a much more favorable dosing schedule.
It has also been reported to favorably modulate the inflam-
matory response associated with nerve injury. Although both
antibiotics share a similar antibacterial spectrum, the choice
should be individualized according to the clinical context.

Objectives

The aim of this study was to compare the pharmacoki-
netic properties of 2 third-generation cephalosporin an-
tibiotics — ceftriaxone and cefotaxime — and to analyze
the potential benefits and limitations of their use based
on available literature reports.

Materials and methods

The PubMed and Scopus databases were searched using
the keywords: ceftriaxone, cefotaxime, pharmacokinetics,
[B-lactams, and cephalosporins. The database search took
place on November 10, 2024. Moreover, the available drug
characteristics of ceftriaxone and cefotaxime were analyzed.
Based on the available information, the pharmacokinetic
properties of both drugs were compiled. An attempt was made
to relate the obtained data to clinical conditions. The topic
of this paper was inspired by personal clinical observations.
A total of 320 articles published between 1980 and 2024 were
reviewed, of which 48 were ultimately included in the analysis.
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) reporting guidelines were followed.?

Mechanism of action and dose
selection

The mechanism of action of ceftriaxone and cefotaxime
involves disrupting the synthesis of the bacterial cell wall
by binding to penicillin-binding proteins (PBPs), ultimately
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leading to cell death. The PBPs are essential for the syn-
thesis of the bacterial cell wall. The binding of an antibi-
otic to penicillin-binding proteins (PBPs) inhibits pep-
tidoglycan synthesis, thereby preventing the formation
of new bacterial cells and exerting a bactericidal effect.
This makes cephalosporins, as well as other f-lactam an-
tibiotics, effective against both aerobic Gram-positive and
Gram-negative bacteria.! The dosage regimen of antibiot-
ics is based on their individual PK/PD profile. The greater
the affinity for binding to PBPs, the stronger the bacteri-
cidal effect of the antibiotic.

Factors affecting the efficacy
of B-lactam antibiotics

Other indirect factors affecting the effectiveness of an-
timicrobial therapy include the drug’s pharmacokinetic
properties: absorption, distribution, metabolism, and ex-
cretion. Each of these factors determines the extent and
manner in which a given antibiotic exerts its pharmaco-
dynamic effect. The effect of an antibiotic on a given mi-
croorganism can be assessed in vitro in a microbiological
laboratory. One of the most commonly used methods for
this purpose is the disk diffusion test on agar medium
(Fig. 1A). In this method, the result is given as the diameter
of the inhibition zone around the antibiotic disk, expressed
in millimeters. In another method — the E-test, a gradi-
ent strip with the antibiotic is placed on an agar medium
inoculated with an appropriate concentration of bacteria.
After a suitable time (usually 18—-24 h), the inhibition zone
is read, which is determined by the apex of the formed
parabola (Fig. 1B). The interpretation of the read result,
depending on the country, is carried out using tools con-
tained in documents of the Clinical and Laboratory Stan-
dard Institute (CLSI), the French Society for Microbiology
(Comité de '’Antibiogramme de la Société Francaise de

Microbiologie) or the European Committee for Antimicro-
bial Susceptibility Testing (EUCAST).1%-* However, in vi-
tro susceptibility testing alone does not determine clinical
success. Achieving it depends critically on the antibiotic’s
pharmacokinetic profile — its absorption, distribution, me-
tabolism, and excretion within the body. Thus, pharmaco-
kinetic differences, despite the same in vitro susceptibility,
can determine the therapeutic effect. This necessitates
individualized dosing that takes into account multiple fac-
tors and the specific clinical situation.'>18

Pharmacokinetics and
pharmacodynamics

Pharmacokinetics is a discipline within pharmacol-
ogy that describes the fate of a drug in the body. It plays
a crucial role in optimizing and individualizing treat-
ment. Pharmacokinetics describes the journey of a drug
in the body, from its release, through absorption, distribu-
tion in various tissues, metabolism, and ultimately elimi-
nation. Pharmacodynamics, on the other hand, describes
the extent to which the drug itself affects the body (its ef-
ficacy, potency, occurrence of adverse effects, interactions,
etc.). Pharmacokinetic and pharmacodynamic properties
are detailed in the summary of product characteristics.
However, many clinical scenarios significantly influence
the pharmacodynamic characteristics of a drug through
its pharmacokinetic fate.

Absorption encompasses all processes leading to the drug’s
entry into the circulatory system, thereby reducing its con-
centration at the site of administration. Distribution, in turn,
refers to the transfer of the drug from the bloodstream into
tissues, which may occur through either active or passive
transport. Metabolism includes all biochemical processes
the drug undergoes, ultimately enhancing its physicochemi-
cal properties to facilitate excretion via the appropriate

Fig. 1.
Determination

of drug
susceptibility

to cefotaxime using
the disk diffusion
method (A) and
E-test method

(B). Example

of bacterial strain
sensitive (right side
of the photographs)
and resistant

(left side

of the photographs)
to the tested
antibiotic



organ. The drug elimination process depends, among
other factors, on its degree of binding to plasma proteins.
The higher the degree of a drug bound to plasma proteins,
the slower its elimination process tends to be.

There are many terms associated with drug pharmaco-
kinetics that define it. The most important ones include:
volume of distribution (Vd), clearance (Cl) and half-life
(t1/2). Volume of distribution (Vd) is the ratio of the mea-
sured concentration of the drug, usually in serum (C),
to the total amount of the drug in the body (X): Vd = X/C.
The more strongly the drug binds to tissue proteins and
the lower its concentration in plasma, the greater its vol-
ume of distribution. Half-life (t;,) is the time it takes for
the concentration of the substance to decrease by half from
its initial value.t®

Clearance (Cl) is defined as the rate at which a drug
is eliminated from the body and is closely related
to the blood flow rate through the excretory organ (Q)
and dependent on the extraction ratio (g). The extraction
ratio numerically expresses the difference in drug concen-
tration entering and leaving the organ. The amount of drug
entering the organ is considered as 1, so the extraction ratio
ranges from O to 1, where a value of 0 indicates no drug
elimination in the organ, and 1 indicates 100% elimination
of the drug from the organ. Blood flow through organs
can vary in many clinical conditions. Clearance, and thus
the elimination rate, will also vary according to the equa-
tion Cl = Q x e. It is important to note that ceftriaxone
and cefotaxime differ in their extraction ratios, which ad-
ditionally affects drug clearance.

Table 1. Selected pharmacokinetic characteristics of ceftriaxone and cefotaxim

Name of drug | Cefotaxime

Chemical formula

Structural pattern

C16H17NSO7SZ

Average mass 455465 554.58
Affinity to PBP proteins 1b, 23,3, 1A, 2B 2B
20-36% in unchanged form
Metabolism 15-25% as deacetyl-cefotaxime negligible
other metabolites M2 and M3 (inactive)

Half-life approx. 1h 58-87h
Degree of binding to albumin [%] 25-40 95
Maximum concentration [min] 30 120-180
Clearance [mL/min] 260-390 10-22
Volume of distribution [L] 21-37 7-12
Elimination during hemodialysis yes no
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The high degree of albumin binding slows the elimina-
tion of the antibiotic from the body (Table 1).%620-21 This
occurs through slower metabolism, as well as reduced
glomerular filtration. The binding of the antibiotic to al-
bumin is not permanent and leads to the establishment
of an equilibrium level. This is crucial for antimicrobial
therapy, as this level must exceed the MIC of the bacteria
(up to 4 times in critical conditions). While part of the ac-
tive form is metabolized to balance the albumin/drug free
fraction, another part of the drug is released from its non-
permanent binding to albumin. It undergoes further trans-
formations but can already exert a lethal effect on bacteria.
The release of the drug from its binding to plasma proteins
helps maintain its plasma concentration after the unbound
fraction has already undergone metabolism and/or elimi-
nation. Over time, between successive doses of f-lactam
antibiotics, the albumin-to-drug ratio changes, leading
to a reduction in the free (unbound) drug fraction. These
interactions follow the principles of the law of mass action
(Guldberg and Waage’s law). The degree of albumin bind-
ing, as well as other distribution and metabolic parameters,
varies among antibiotics.?272°

Ceftriaxone

Ceftriaxone binds to albumin at approx. 95%, with the un-
bound fraction showing biological activity. The high degree
of binding affects the rate of antibiotic elimination, sig-
nificantly slowing it down. Subsequent doses significantly

| Ceftriaxone
C18H18NSO753

PBP - penicillin-binding proteins. The table was created using data from websites: https://go.drugbank.com/drugs/DB00493 and https://go.drugbank. com/
drugs/DB01212%°?" and product monographs including patient medication information.*®
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increase the average maximum serum drug concentration
by approx. 11% (8—15%), resulting in the steady state be-
ing reached relatively late, around 48-72 h after the first
dose of the drug. Although hypoalbuminemia increases
the free, pharmacologically active fraction of the drug
in the bloodstream, it also raises the risk of prolonged ex-
posure to sub-MIC concentrations due to the establish-
ment of equilibrium between bound and unbound frac-
tions at an insufficient level. This situation not only reduces
the likelihood of therapeutic success but also promotes
the selection of resistant bacterial strains.”?3

Both ceftriaxone and cefotaxime can be administered
intravenously or intramuscularly. Currently, there are sev-
eral dosing regimens for ceftriaxone administered intrave-
nously (2gx1,2gx2,4gx 1).Itis particularly important
to use maximum daily doses (4 g) in the treatment of bac-
terial meningitis to achieve the penetration of the drug
into the cerebrospinal fluid (CSF). In patients without
meningitis, the concentration of ceftriaxone in the CSF
is only 2% of the serum concentration. However, in cases
of meningitis, it increases more than twelvefold, reaching
25% of the serum concentration. The highest concentra-
tion of the drug in the CSF occurs approx. 4-6 h after
intravenous administration of the drug. In critically ill
patients (with dysfunction of more than 1 organ/system
in the course of sepsis or those diagnosed with septic shock
based on the Sequential Organ Failure Assessment score
(SOFA) and/or the quick Sequential Organ Failure As-
sessment (QSOFA) to achieve a better therapeutic effect,
it may be necessary to maintain ceftriaxone concentration
in the serum >4 x MIC of the pathogen. Improved PK/
PD outcomes — reflecting enhanced therapeutic efficacy
through optimized dosing strategies — can be achieved
by modifying the mode and frequency of drug administra-
tion. Some authors recommend continuous infusion, and
it has also been demonstrated that administering ceftriax-
one every 12 h results in superior PK/PD effects compared
with a 24-h dosing regimen.1724-28

There is a risk of calcium salt precipitation during in-
travenous ceftriaxone therapy. The occurrence of deposits
in the gallbladder and kidneys, as well as cases of pancre-
atitis, has been reported. Fatal outcomes have also been
documented in premature infants and neonates receiving
ceftriaxone, attributed to co-precipitation with calcium
in the kidneys and lungs. For this reason, there is a re-
striction on using ceftriaxone concurrently with calcium-
containing preparations, including parenteral nutrition
solutions, certain crystalloids, and during continuous renal
replacement therapy with citrate anticoagulation, where
continuous calcium solution supplementation is required.
In cases of septic shock, balanced crystalloid resuscitation
is required, often involving fluids that contain calcium.
Given the prolonged time required for ceftriaxone to reach
its peak serum concentration, it may be advisable to use
an alternative antibiotic with a more favorable PK/PD pro-
file. In septic shock, the delay in initiating appropriate

antibiotic therapy is associated with increased mortal-
ity.11429-32 This should be kept in mind when choosing
an antimicrobial agent.

The study by Lim et al. provides valuable data. The authors
analyzed 939 patients who received ceftriaxone in the emer-
gency department for sepsis or septic shock. The study com-
pared the impact of the drug administration mode (3 min vs
30 min) on mortality. No statistically significant differences
in mortality were observed between the 2 groups. As the ef-
fectiveness of f-lactam antibiotics depends on the duration
of drug exposure (fT > MIC), the observed findings may be
explained by the pharmacokinetic properties of ceftriaxone.
A similar study involving cefotaxime would certainly be
of interest.3® The available literature still lacks sufficient
studies comparing these 2 antibiotics.

Cefotaxime

Cefotaxime binds to albumin to a much lesser extent
than ceftriaxone, i.e., in the range of 25-40%. Cefotaxime
is the only third-generation cephalosporin that, as a result
of metabolism, is partially (1/3 of the dose) transformed
into desacetylcefotaxime and lactone. While the lactone it-
self does not exhibit biological activity, deacetylcefotaxime
does, reaching concentrations in tissues and body fluids
that inhibit bacterial growth. Moreover, desacetylcefotax-
ime, despite its lower biological activity compared to cefo-
taxime, exhibits greater resistance to p-lactamases, which
can be an additional advantage. The half-life of cefotaxime
ranges from 50 min to 80 min, while for desacetylcefotax-
ime, this time extends to 125 min. This necessitates more
frequent administration of this antibiotic, i.e., 1-2 g x 3,
and in the case of bacterial meningitis, 2 g x 4. Similar
to ceftriaxone, cefotaxime penetrates the blood—brain bar-
rier much better in meningitis and reaches therapeutic
concentrations there.3*

After intramuscular administration of ceftriaxone at a dose
of 1-2 g, the maximum serum concentration is reached af-
ter approx. 2—3 h, whereas the time for 1 g of cefotaxime
is 30 min. The dosing frequency of both antibiotics is influ-
enced by differences in serum clearance, which is respec-
tively 10—22 mL/min for ceftriaxone and 260—390 mL/min
for cefotaxime, and from a clinical standpoint, is more
favorable for ceftriaxone. Additionally, the less frequent
need for administering the drug is associated with a lower
risk of infection related to the drug administration itself.
On the other hand, cefotaxime exhibits a more favorable
volume of distribution, in the range of 21-37 L, whereas
for ceftriaxone, it falls within the range of 7-12 L. Unlike
ceftriaxone, cefotaxime is removed during hemodialysis,
which should be taken into account when dosing this drug
in patients undergoing such procedures. Dose adjustment
of both antibiotics applies only to cases of end-stage renal
failure (stage V chronic kidney disease). It involves halving
the dose, not the frequency of its administration.>¢35-37



The influence of PK/PD
on the development of resistance
mechanisms

Differences in PK/PD can also influence the promo-
tion of mechanisms of resistance to B-lactam antibiot-
ics. This is associated with a change in the exposure time
to bactericidal concentrations of the antibiotic. The longer
the time below the MIC of bacteria, the greater the like-
lihood of inducing antibiotic resistance. One example
of such resistance, involving the production of enzymes
that deactivate antibiotics, is the production of extended-
spectrum B-lactamases (ESBLs).3® This mechanism plays
a significant role in the therapy of many invasive infec-
tions because the detection of ESBL significantly nar-
rows therapeutic options. It has also been found that
carriage of bacteria strains producing ESBL can persist
for months.3® Moreover, the presence of ESBL-producing
microorganisms is also associated with increased trans-
mission of other antibiotic resistance mechanisms.** There
are numerous data confirming the phenomenon of ESBL
production after the use of third-generation cephalospo-
rins.**2 The choice of cefotaxime may be associated with
a lower risk of B-lactamase production. First, this is as-
sociated with potentially shorter exposure times below
the MIC of bacteria. Second, the metabolite of cefotaxime,
desacetylcefotaxime, has a significantly longer half-life
than the parent compound, exhibits biological activity,
and has documented greater resistance to the action
of B-lactamases.

Interaction between drugs

Information about selected interactions between cef-
triaxone and cefotaxime with other drugs is shown
in Table 2.4344
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Limitations

The study is limited by the relatively small number
of publications comparing treatment outcomes using ce-
fotaxime and ceftriaxone. Another limitation is the more
frequent use of ceftriaxone compared to cefotaxime
in non-pediatric patients. The lack of widespread avail-
ability of therapeutic concentration measurements for
[B-lactam antibiotics in patient serum significantly restricts
the ability to monitor ceftriaxone and cefotaxime levels.
This limitation hinders the conduct of multicenter stud-
ies in this area and, consequently, reduces the number
of scientific reports on the subject.

Conclusions and perspectives

Due to pharmacokinetic differences, it appears that de-
spite the established principle of extrapolating suscepti-
bility results from one antibiotic to the other in infections
caused by Gram-negative bacilli, there are scenarios where
the choice between ceftriaxone and cefotaxime may signifi-
cantly impact treatment outcomes and the initial response
to antimicrobial therapy. Insights into the pharmacoki-
netics of these antibiotics suggest a variable response
to the implemented antibiotic therapy, particularly in criti-
cally ill patients. The pharmacokinetic properties of these
antibiotics may also affect the development of resistance
mechanisms, including the production of -lactamases,
among Gram-negative bacilli.

Both ceftriaxone and cefotaxime are commonly used an-
tibiotics in the treatment of invasive infections as targeted
antibiotic therapy, but they are also utilized in numerous
empirical therapy regimens. Both drugs exhibit a very
good PK/PD profile and a virtually identical spectrum
of antimicrobial activity. They penetrate very well into
most body fluids and tissues, which makes them widely
applicable. However, the differences between the 2 drugs

Table 2. Selected interactions between ceftriaxone and cefotaxime with another drugs

Name of drug | Cefotaxime

Bacteriostatic antibiotics

Aminoglycosides

Probenecid
Diuretics
Oral contraceptives =

Amsacrine, vancomycin, fluconazole,
and aminoglycosides

Heparin, warfarin -

Possible antagonism

Concurrent use may lead to increased nephrotoxicity
and a reduced bactericidal effect; therefore,
it is recommended to maintain at least a 1-hour interval
between antibiotic administrations.

In cases of impaired clearance, there is a risk
of increased plasma concentration.

Increased risk of nephrotoxicity.

| Ceftriaxone
Possible antagonism
Reduced bactericidal effect when used concurrently

(maintain at least a 1-h interval between antibiotic
administrations).

Does not affect ceftriaxone excretion in urine (does
not impair tubular secretion). May inhibit ceftriaxone
excretion in bile.

No increase in nephrotoxicity was observed..

May reduce the effectiveness of oral contraceptives.
The use of non-hormonal contraceptive methods
is recommended during ceftriaxone treatment.

Incompatibility.

Increased risk of bleeding
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mean that their use should be individually considered
each time and adjusted not only to the patient’s condition
but also to the clinical situation. From a clinical point
of view, the onset of antibiotic action is important. While
in most infections, both ceftriaxone and cefotaxime will
have sufficient time to achieve appropriate concentrations
at the site of infection, in special situations such as sep-
tic shock or severe cases of meningitis, the differences
can be significant.?® In such cases, the use of cefotaxime
should theoretically be preferable. However, it should also
be noted that in the treatment of Lyme disease, ceftriax-
one is the antibiotic of choice, and for such situations,
the possibility of reducing the frequency of drug injec-
tions seems justified. It has also been shown that ceftri-
axone has a beneficial effect on modulating glutamate
neurotransmission, reducing the inflammation-related
nerve response.’>~% Comparison of the clinical efficacy
of ceftriaxone and cefotaxime undoubtedly requires fur-
ther research, as indicated by their pharmacokinetic pro-
files. Currently, ceftriaxone is the most commonly cho-
sen cephalosporin for empirical treatment.*®4° However,
there is a real risk of initially lower effectiveness in such
a choice, which may also more frequently lead in such
cases to antibiotic switching to a broader-spectrum agent,
such as carbapenem. In the era of rapidly increasing an-
tibiotic resistance and the spread of Gram-negative rods
producing p-lactamases (including carbapenemases),
the carbapenem-sparing strategy plays a crucial role.
Clinical observation and further research are required
to compare the frequency of introduction of ESBL produc-
tion by ceftriaxone and cefotaxime.

Furthermore, both ceftriaxone and cefotaxime can
induce the production of f-lactamases. The pharmaco-
kinetic profile and metabolism of cefotaxime support
alower risk of production of such enzymes. Serum protein
saturation occurs much more rapidly with cefotaxime,
leading to a quicker establishment of the equilibrium state
between albumin and the drug’s free (biologically active)
fraction. On the other hand, ceftriaxone has a much more
favorable dosing schedule. It is also credited with favorably
modulating the inflammatory response associated with
nerve damage. Despite the similar antibacterial spectrum
of ceftriaxone and cefotaxime, the choice of antibiotic for
therapy should always be carefully evaluated on an indi-
vidual basis.

Use of Al and Al-assisted technologies

Not applicable.
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