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Abstract
Background. Breast cancer (BC) is a heterogeneous disease classified into 4 molecular subtypes, each with 
distinct molecular characteristics that influence treatment strategies, clinical outcomes and prognosis. These 
subtypes are associated with specific changes in cellular metabolism, which may play a crucial role in tumor 
development and progression.

Objectives. To identify distinctive serum metabolic biomarkers for each molecular BC subtype and to evaluate 
their associations with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) receptor status, 
thereby refining molecular classification and informing personalized treatment strategies.

Materials and methods. The study utilized the proton nuclear magnetic resonance (1H NMR) metabolomics 
method to collect serum metabolic profiles from BC patients. Pattern recognition analysis was employed 
to analyze the metabolic data. Metabolic markers specific to each molecular subtype were selected, and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to explore 
serum metabolic pathway heterogeneity.

Results. Distinct metabolic markers were identified for each molecular subtype, demonstrating strong 
discriminatory power. Additionally, we identified specific serum metabolites whose levels correlate with 
ER and HER2 expression profiles. The KEGG pathway analysis revealed significant heterogeneity in serum 
metabolic pathways across different subtypes.

Conclusions. This study demonstrates pronounced metabolic differences across BC subtypes that mirror 
their distinct molecular profiles and may underlie variations in therapeutic response. These metabolomic 
insights hold promise for refining tumor classification, improving diagnostic accuracy and guiding more 
personalized treatment strategies.
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Introduction

Breast cancer (BC) is among the most common malig-
nancies worldwide. According to the International Agency 
for Research on Cancer (IARC) of the World Health Orga-
nization (WHO), in 2022, BC became the most frequently 
diagnosed cancer globally – surpassing lung cancer – with 
2.3 million new cases and nearly 665,000 deaths.1 Since 
the mid-2000s, the incidence of female BC has steadily 
increased by approx. 0.6% per year.2,3

Breast cancer treatment has evolved dramatically over 
the past several decades and now encompasses a multi-
modal approach, including surgery combined with systemic 
therapies – chemotherapy, endocrine therapy and targeted 
agents – as well as radiotherapy. These integrated strategies 
have substantially improved patient survival; however, sig-
nificant heterogeneity remains in treatment responses and 
long-term outcomes across different patient subgroups.4

Breast cancer is a heterogeneous disease classified into 
4 main molecular subtypes based on the expression of es-
trogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor 2 (HER2), and the prolifera-
tion marker Ki-67.5 Luminal A tumors are ER-positive, HER2-
negative, have PR expression ≥20%, and Ki-67 ≤14%; luminal 
B tumors are also ER-positive but may be HER2-negative 
or -positive, with PR <20% or Ki-67 >14%; the HER2-enriched 
subtype is ER-negative, PR-negative and HER2-positive; and 
triple-negative BCs (TNBCs) lack ER, PR and HER2 expres-
sion. Clinical presentation, tumor biology and therapeutic 
responsiveness vary markedly across molecular subtypes,6 
making subtype classification a cornerstone of treatment 
decision-making.7 Luminal A tumors – the most common 
subtype – exhibit robust responses to endocrine therapy but 
derive minimal benefit from chemotherapy,8 whereas luminal 
B cancers typically necessitate combined hormone therapy 
and cytotoxic chemotherapy to achieve optimal outcomes.9

HER2-positive/ER-negative tumors are often associated 
with aggressive, advanced disease and require targeted 
anti-HER2 therapies.10 Triple-negative BC, which accounts 
for roughly 20% of all BC, is typically more aggressive than 
other subtypes; it disproportionately affects younger pa-
tients, presents with poorly differentiated histology and 

advanced stage at diagnosis, and carries a high risk of lo-
cal recurrence and distant metastasis, resulting in poorer 
outcomes and survival.11

The heterogeneous treatment responses across these 
molecular subtypes underscore the imperative for per-
sonalized therapeutic strategies. Surgical intervention 
is the primary therapy for early-stage disease, whereas 
systemic therapies are used in both adjuvant and neo-
adjuvant settings. Endocrine therapy continues to  be 
the cornerstone for hormone receptor-positive BC, while 
HER2-targeted agents have revolutionized outcomes 
in HER2-positive disease, and emerging immunothera-
pies are showing enhanced efficacy in TNBC. Optimizing 
treatment approaches on the basis of each subtype is cru-
cial for achieving the most favorable results for patients.

Metabolomics is  the  comprehensive characterization 
of small-molecule metabolites in cells, tissues, organs, and 
whole organisms that respond to intrinsic or extrinsic fac-
tors.12 Metabolomics, a  powerful “omics” approach, has 
the potential to facilitate early disease detection and uncover 
novel therapeutic targets by profiling metabolites downstream 
of gene and protein activity.13 Beyond revealing biochemical 
alterations, it uniquely captures in vivo phenotypic changes 
that may be missed by genomic and proteomic analyses.

Recent metabolomic approaches have greatly improved 
our understanding of BC biology. TBK1-mediated meta-
bolic processes in cancer cells have emerged as a hallmark 
of metabolic reprogramming, with each molecular subtype 
exhibiting a distinct metabolic signature.14 For example, 
an liquid chromatography–high-resolution mass spectrom-
etry (LC-HRMS)-based plasma metabolomic study in BC pa-
tients revealed subtype-specific alterations in the porphyrin, 
chlorophyll and glycerophospholipid metabolic pathways.15 
The use of metabolomics in BC has grown exponentially 
in recent years. These alterations in cellular metabolism have 
been characterized into several important pathways that are 
critical for BC initiation and progression.16 Enhanced aerobic 
glycolysis, the classic Warburg effect, is a consistent feature 
of aggressive BC subtypes. Metabolomic profiling has also 
uncovered distinctive alterations in amino acid turnover and 
fatty acid β-oxidation that map to specific molecular sub-
types, highlighting their unique metabolic reprogramming.17

Highlights
•	 Proton nuclear magnetic resonance (1H NMR) metabolomics identifies distinct serum metabolic markers for 

4 breast cancer (BC) molecular subtypes.
	• Choline and glycerophosphorylcholine levels significantly change across all subtypes, indicating altered glycero-
phospholipid metabolism.

	• Metabolic markers associated with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) receptor 
expression demonstrate strong predictive value for molecular typing.

	• Pathway analysis highlights subtype-specific disturbances in energy, amino acid and lipid metabolism.
	• Findings suggest that serum metabolite profiles may guide personalized diagnosis and treatment of BC patients.
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Objectives

Recent investigations have identified metabolic signa-
tures that predict both treatment response and resistance. 
For instance, specific alterations in metabolic pathways 
have been linked to endocrine therapy resistance in hor-
mone receptor-positive BC.18 Moreover, the combination 
of metabolomics with other omics data has provided new 
therapeutic targets and a better understanding of drug re-
sistance.19 The metabolic features that underlie the differ-
ent molecular subtypes of BC are still poorly understood, 
despite progress in BC treatment. We hypothesized that 
distinct molecular subtypes of BC have unique metabolic 
signatures detectable in the serum of patients and that 
these metabolic profiles correlate closely with the expres-
sion status of key receptors, ER and HER2. Moreover, 
the detection of these subtype-specific metabolic signa-
tures may offer valuable information regarding BC biol-
ogy and help guide individualized treatment initiatives.

This study aimed to reveal metabolic differences be-
tween BC patients and healthy controls and explore 
the biochemical pathways affected by different molecular 
subtypes of BC patients.

Materials and methods

Study population

A total of 117 BC patients and 55 healthy control subjects 
were enrolled at the First Affiliated Hospital of Guangdong 
Pharmaceutical University (Guangzhou, China) between 
January 2020 and December 2024. Sample size was deter-
mined with power analysis (α = 0.05, power = 0.8) to ensure 
the detection of clinically meaningful metabolic differences.

The patient inclusion criteria were as follows: 1) histo-
logically confirmed, newly diagnosed BC with molecular 
subtype determined with ER, PR, HER2, and Ki-67 status; 
2) no prior oncologic treatment; and 3) absence of other 
malignancies or serious systemic illnesses. Healthy con-
trols were age-matched healthy women with normal clinical 
examinations and no history of cancer or severe disease.

This study was approved by the Medical Ethics Commit-
tee of the First Affiliated Hospital of Guangdong Pharma-
ceutical University (approval No. 2022KT81).

Biological material collection 
and processing

Blood samples were collected from all participants after 
12 h of fasting and centrifuged at 4°C at 3,000 rpm for 
10 min to obtain the serum. For nuclear magnetic reso-
nance (NMR) analysis, 300 µL of serum was mixed with 
150 µL of phosphate-buffered saline (PBS) (0.2 mol/L, 
pH 7.4) and 100 µL of D2O in 5 mm NMR tubes after re-
centrifugation (3,000 rpm, 10 min, 4°C).

Assay methods and data preprocessing

High-resolution proton NMR spectra were acquired 
on  a  Bruker AVANCE III 500  MHz superconducting 
NMR spectrometer (Bruker Inc., Karlsruhe, Germany). 
The pulse sequence was Carr–Purcell–Meiboom–Gill 
(CPMG). Proton NMR spectra were acquired at 298 K 
with an echo time of 100 ms and a relaxation delay of 3 s. 
The  spectral width was set to 10 kHz, and 128  scans 
were collected for each spectrum. Data were processed 
in TopSpin 4.1 (Bruker Inc.), where manual phase correc-
tion and baseline adjustment were performed. Chemical 
shifts were calibrated using the lactate methyl doublet 
at 1.33 ppm. Spectral integration was performed in AMIX 
v.  4.0.2 (Bruker Inc.) using 0.004  ppm buckets across 
the 0.5–9.0 ppm range. The 4.7–5.5 ppm region was ex-
cluded to remove residual water signals, and the resulting 
integrals were normalized to the total spectral area.

Metabolic marker selection and analysis

Previous studies have demonstrated that BC is charac-
terized by dysregulation of key metabolic pathways, in-
cluding glucose metabolism, amino acid metabolism and 
lipid metabolism, which together reflect hallmark features 
of malignancy such as the Warburg effect, altered protein 
synthesis and membrane lipid remodeling. The metabolic 
markers were identified through signals in  the proton 
nuclear magnetic resonance (1H NMR) spectra, which 
represent metabolites in the serum samples. The integral 
data of these metabolites were used for orthogonal par-
tial least squares discriminant analysis (OPLS-DA) analy-
sis to distinguish between healthy controls and patients 
with BC. Specifically, we analyzed signals in the range 
of 0.5−9.0 ppm, with the integral from 4.7−5.5 ppm set 
to 0 to eliminate the influence of residual water signals.

Outcome measures

The study outcome measures focused on the metabolic 
differences between healthy controls and BC patients, as as-
sessed through OPLS-DA. These measurements include in-
tegral data from 1H spectra obtained using NMR technology, 
as well as characteristic metabolites of different BC molecu-
lar subtypes analyzed via MetaboAnalyst 6.0 (http://www.
metaboanalyst.ca) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database (https://www.kegg.jp) . 

Statistical analyses

The  processed spectral data from 172  participants 
(55 healthy controls, 30 luminal A, 46 luminal B, 23 HER2-
positive, and 18 triple-negative (TN) patients) were analyzed 
using OPLS-DA in MetaboAnalyst 6.0. As an exploratory 
metabolomics approach, we constructed OPLS-DA mod-
els for 2 sets of comparisons. We first compared healthy 

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
https://www.kegg.jp


M. Xu et al. Metabolic markers in breast cancer via NMR4

controls (n = 55) with each BC molecular subtype – lumi-
nal A (n = 30), luminal B (n = 46), HER2-positive (n = 23), 
and TN (n = 18), and then stratified patients by receptor 
status and compared controls with ER-positive (n = 76), 
ER-negative (n = 41), HER2-positive (n = 40), and HER2-
negative (n = 77) groups. Model performance was validated 
using 7-fold cross-validation, evaluating explained variance 
in the predictors (R2X), explained variance in the responses 
(R2Y) and the model’s predictive ability (Q2). Following 
OPLS-DA model construction, score plots were generated 
via MetaboAnalyst 6.0 for data visualization.

Potential differentially abundant metabolites were se-
lected on the basis of variable importance in projection 
(VIP) scores greater than  1.0. For univariate analysis, 
we first tested the normality assumption via the Shapiro–
Wilk test and the homogeneity of variances via Levene’s 
test. The discriminatory ability of different metabolite 
combinations between BC subtypes and healthy controls 
was evaluated by calculating the area under the receiver 
operating characteristic (ROC) curve (AUC). Venn dia-
grams were constructed to identify shared and unique 
metabolites among different BC subtypes.

Although this exploratory approach entails multiple 
comparisons and may increase the risk of type I errors, 
we  applied the  Benjamini–Hochberg false discovery 
rate correction, a more permissive method, to maximize 
the identification of potential metabolic alterations, defin-
ing statistical significance as an adjusted p < 0.05.

For metabolic pathway analysis, we  utilized both 
the KEGG database (http://www.kegg.jp) and the Metabo-
Analyst 6.0 online service. The KEGG analysis was per-
formed via KEGG Mapper 2.5, with a focus on Homo sa-
piens pathways. In MetaboAnalyst, pathway analysis was 
conducted via the H. sapiens KEGG pathway library.

Pathway analysis was performed using 2 complemen-
tary methods: enrichment analysis via the  hypergeo-
metric test to identify pathways overrepresented among 

the differentially abundant metabolites, and topology analy-
sis based on relative-betweenness centrality to gauge each 
metabolite’s network importance. Pathways with impact val-
ues greater than 0.1 and false discovery rate (FDR)-adjusted 
p-values below 0.05 were considered significantly altered.

Results

Clinical characteristics of patients 
and healthy controls

A total of 172 participants were enrolled: 55 healthy con-
trols and 117 BC patients, stratified by molecular subtype 
into 30 luminal A, 46 luminal B, 23 HER2-positive, and 
18 TNBC cases. Baseline demographic and clinical char-
acteristics are summarized in Table 1.

Independent 2-tailed t-tests demonstrated no signifi-
cant differences in mean age between healthy controls 
and each BC subtype: luminal A (t83 = 1.54, p = 0.127), 
luminal B (t99 = 0.33, p = 0.740), HER2-positive (t76 = 0.68, 
p = 0.500), or TNBC (t71 = 0.92, p = 0.361). Likewise, body 
mass index (BMI) did not differ significantly between con-
trols and patients across subtypes: luminal A (t83 = 1.25, 
p = 0.216), luminal B (t99 = 1.50, p = 0.136), HER2-positive 
(t76 = 1.50, p = 0.136), or TNBC (t71 = 0.38, p = 0.703).

Serum 1H-NMR spectra pattern recognition 
analysis and characteristic metabolite 
identification

The representative serum 1H-NMR spectra from healthy 
controls and patients with 4 subtypes of BC are presented 
in Fig. 1. On the basis of the Human Metabolome Da-
tabase (HMDB; https://www.hmdb.ca)) and related lit-
erature reports,20,21 24  endogenous metabolites were 
identified. The  OPLS-DA results of  the  1H-NMR data 

Table 1. Clinical characteristics of healthy control participants and breast cancer patients of different subtypes

Characteristics Healthy control
(n = 55)

Luminal A
(n = 30)

Luminal B
(n = 46)

HER2
(n = 23)

TN
(n = 18)

Age [years]
Mean ±SD

55.22 ±14.83 61.29 ±16.43 54.17 ±13.56 58.18 ±19.18 51.20 ±16.97

BMI [kg/m2]
Mean ±SD

22.33 ±3.11 23.58 ±2.41 23.26 ±2.92 24.93 ±7.87 21.90 ±4.33

TNM stage Tis,
n (%)

– 6 (20.0) 1 (2.2) 2 (8.7) 0 (0)

TNM stage I,
n (%)

– 8 (26.7) 9 (19.6) 2 (8.7) 2 (11.1)

TNM stage II,
n (%)

– 12 (40.0) 25 (54.3) 12 (52.2) 10 (55.6)

TNM stage III,
n (%)

– 4 (13.3) 6 (13.0) 7 (30.4) 6 (33.3)

TNM stage IV,
n (%)

– 0 (0) 5 (10.9) 0 (0) 0 (0)

SD – standard deviation; TN – triple negative type; TNM – tumor node metastasis; BMI – body mass index; Tis – tumor in situ; HER2 – human epidermal 
growth factor 2.

http://www.kegg.jp
https://www.hmdb.ca
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from healthy controls and patients with BC are shown 
in Fig. 2. The score plots revealed significant metabolic 
differences between the  serum samples of  the  4  MSs 
and healthy controls. Metabolites with VIP ≥1 were sub-
jected to Student’s t test, and the results are summarized 
in Table 2. Serum metabolic markers of the 4 MSs were 
subsequently screened on the basis of the VIP values and 
statistical analysis results. In the luminal A subtype co-
hort, metabolomic profiling revealed significant eleva-
tions in glutamate (t[83] = 3.49, FDR-p = 0.002), glutamine 
(t[83] = 5.61, FDR-p < 0.001), citrate (t[83] = 3.75, FDR-
p = 0.001), phosphorylcholine/glycerophosphorylcholine 
(PC/GPC; t[83] = 6.46, FDR-p < 0.001), glycine (t[83] = 3.78, 
FDR-p < 0.001), threonine (t[83] = 4.23, FDR-p < 0.001), 
choline (t[83] = 6.54, FDR-p < 0.001), creatine/phospho-
creatine (Cr/Pcr; t[83] = 4.70, FDR-p < 0.001), 1-methyl-
histidine (t[83] = 5.61, FDR-p < 0.001), and methionine 
(t[83] = 4.00, FDR-p < 0.001) relative to controls.

Conversely, the luminal B subgroup exhibited distinct 
metabolic patterns with increased lactate (t[99] = 3.37, 
FDR-p = 0.003) and acetate (t[99] = 4.28, FDR-p < 0.001), 
alongside significant reductions in citrate (t[99] = 5.27, 
FDR-p < 0.001), phosphorylcholine/glycerophosphoryl-
choline (PC/GPC) (t[99] = 7.74, FDR-p < 0.001), trimethyl-
amine oxide (TMAO)/taurine (t[99] = 3.21, FDR-p = 0.004), 

taurine (t[99] = 3.94, FDR-p = 0.0008), glucose (t[99] = 4.67, 
FDR-p < 0.0008), choline (t[99] = 7.63, FDR-p < 0.001), Cr/
Pcr (t[99]=4.07, FDR-p < 0.001), and 1-methylhistidine 
(t[99] = 5.34, FDR-p < 0.001) (Table 2).

HER2-positive tumors demonstrated characteris-
tic metabolic perturbations, marked by elevated lactate 
(t[76] = 3.87, FDR-p < 0.001) and diminished levels of ci-
trate (t[76] = 3.37, FDR-p = 0.003), PC/GPC (t[76] = 5.31, 
FDR-p < 0.001), choline (t[76] = 5.48, FDR-p < 0.001), Cr/
Pcr (t[76] = 3.27, FDR-p = 0.004), and 1-methylhistidine 
(t[76] = 4.01, FDR-p < 0.001).

The TNBC cohort displayed the most pronounced meta-
bolic dysregulation, featuring increased lactate (t[71] = 2.24, 
FDR-p = 0.043) alongside decreased concentrations of glu-
tamine (t[71] = 2.22, FDR-p = 0.045), PC/GPC (t[71] = 3.13, 
FDR-p = 0.005), taurine (t[71] = 3.11, FDR-p = 0.005), glu-
cose (t[71] = 3.02, FDR-p = 0.007), threonine (t[71] = 2.12, 
FDR-p = 0.043), and choline (t[71] = 3.25, FDR-p = 0.004).

Venn diagram of metabolic markers 
related to molecular subtypes

Figure 3 shows that choline and the phosphocholine/glyc-
erophosphocholine (PC/GPC) ratio was significantly dysregu-
lated across all BC subtypes. In the hormone-receptor-positive 

Fig. 1. Representative Carr–Purcell–Meiboom–Gill (CPMG) nuclear magnetic resonance (NMR) 1H spectra of sera from different participants. 
A. Representative NMR 1H spectra of sera from healthy controls; B. Representative NMR 1H spectra of sera from luminal A breast cancer (BC) patients; 
C. Representative NMR 1H spectra of sera from luminal B BC patients; D. Representative NMR 1H spectra of sera from human epidermal growth factor 2 
(HER2) BC patients; E. Representative NMR 1H spectra of sera from triple-negative breast cancer (TNBC) patients. The metabolites identified in the spectrum 
are labeled as follows: 1. lipids, 2. leucine/isoleucine, 3. valine, 4. lactate, 5. alanine, 6. acetate, 7. N-acetyl compound, 8. methionine, 9. glutamate, 
10. acetoacetate, 11. glutamine, 12. citrate, 13. creatine/Pcr, 14. choline, 15. phosphocholine/glycerophosphocholine, 16. trimethylamine N-oxide/taurine, 
17. taurine, 18. glycine, 19. myo-inositol, 20. threonine, 21. glucose, 22. creatinine, 23. tyrosine, 24. 1-methylhistidine



Fig. 2. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots for 1H-NMR spectra of sera and variable importance in projection (VIP) 
values of metabolites between healthy controls and 4 subtypes of breast cancer (BC) patients. A. OPLS-DA score plot and VIP values of metabolites for 
healthy controls and luminal A BC patients, R2X = 0.327, R2Y = 0.82, Q2 = 0.650; B. OPLS-DA score plot and VIP values of metabolites for healthy controls and 
luminal B BC patients, R2X = 0.360, R2Y = 0.801, Q2 = 0.669; C. OPLS-DA score plot and VIP values of metabolites for healthy controls and human epidermal 
growth factor 2 (HER2) BC patients, R2X = 0.526, R2Y = 0.724, Q2 = 0.515; D. OPLS-DA score plot and VIP values of metabolites for healthy controls and triple-
negative breast cancer (TNBC) patients, R2X = 0.27, R2Y = 0.838, Q2 = 0.518

R2X – explained variance in the predictors; R2Y – explained variance in the responses; Q2 – model’s predictive ability.
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luminal A and B tumors, we additionally 
observed consistent alterations in citrate, 
creatine/phosphocreatine and 1-methyl-
histidine levels alongside PC/GPC and 
choline, reflecting a shared metabolic phe-
notype in endocrine-responsive cancers. 
However, each subtype presented distinct 
metabolic patterns. Luminal A is charac-
terized by unique alterations in glutamate, 
glutamine, glycine, threonine, and methio-
nine, whereas luminal B displays specific 
changes in lactate, TMAO, taurine, glucose, 
and acetate. In the HER2-enriched and TN 
subtypes, we observed consistent elevations 

Table 2. Univariate analysis of potential serum biomarkers between 4 subtypes of breast cancer patients and healthy controls

Metabolites

Luminal A vs healthy controls Luminal B vs healthy controls HER2 vs healthy controls TNBC vs healthy controls

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

Lactate
0.76

(0.31, 1.21)
0.003

0.67
(0.28, 1.07)

0.003
0.96

(0.46, 1.46)
<0.001

0.58
(0.06, 1.09)

0.043

Glutamate
–0.79

(–1.25, –0.34)
0.002

–0.57
(–0.96, –0.17)

0.009
–0.37

(–0.86, 0.13)
0.167

–0.60
(–1.14, –0.05)

0.046

Glutamine
–1.27

(–1.73, –0.82)
<0.001

–0.77
(–1.16, –0.37)

<0.001
–0.49

(–0.99, 0.02)
0.078

–0.60
(–1.14, –0.06)

0.045

Citrate
–0.85

(–1.30, –0.40)
0.001

–1.05
(–1.45, –0.66)

<0.001
–0.84

(–1.33, –0.34)
0.003

–0.10
(–0.64, 0.45)

0.744

PC/GPC
–1.47

(–1.92, –1.02)
<0.001

–1.55
(–1.94, –1.15)

<0.001
–1.32

(–1.82, –0.82)
<0.001

–0.85
(–1.39, –0.31)

0.005

TMAO/taurine
–0.76

(–1.21, –0.30)
0.003

–0.64
(–1.04, –0.24)

0.004
–0.53

(–1.02, –0.03)
0.053

–0.46
(–1.00, 0.08)

0.121

Taurine
–0.64

(–1.09, –0.18)
0.011

–0.79
(–1.18, –0.39)

<0.001
–0.41

(–0.91, 0.09)
0.125

–0.85
(–1.39, –0.30)

0.005

Glycine
–0.86

(–1.31, –0.40)
<0.001

–0.50
(–0.87, –0.13)

0.014
–0.13

(–0.62, 0.37)
0.648

–0.04
(–0.58, 0.50)

0.885

Glucose
–0.80

(–1.26, –0.35)
0.002

–0.93
(–1.33, –0.54)

<0.001
–0.42

(–0.91, 0.08)
0.122

–0.82
(–1.36, –0.28)

0.007

Threonine
–0.96

(–1.41, –0.51)
<0.001

–0.72
(–1.11, –0.32)

0.001
–0.38

(–0.87, 0.12)
0.158

–0.57
(–1.12, –0.03)

0.043

Choline
–1.48

(–1.94, –1.03)
<0.001

–1.52
(–1.92, –1.13)

<0.001
–1.36

(–1.86, –0.86)
<0.001

–0.88
(–1.42, –0.34)

0.004

Creatine/Pcr
–1.07

(–1.52, –0.61)
<0.001

–0.81
(–1.21, –0.42)

<0.001
–0.81

(–1.31, –0.32)
0.004

–0.57
(–1.12, 0.03)

0.052

1-Methylhistidine
–1.25

(–1.70, –0.80)
<0.001

–1.07
(–1.46, –0.67)

<0.001
–1.00

(–1.49, –0.50)
<0.001

–0.66
(–1.20, –0.12)

0.028

Methionine
–0.91

(–1.36, –0.45)
<0.001

–0.27
(–0.66, 0.13)

0.208
–0.24

(–0.74, 0.25)
0.358

–0.46
(–1.00, 0.09)

0.123

Acetate
0.07

(–0.38, 0.53)
0.757

0.85
(0.46, 1.25)

<0.001
0.14

(–0.36, 0.63)
0.621

–0.35
(–0.90, 0.19)

0.219

TNBC – triple-negative breast cancer; SMD – standardized mean difference; 95% CI – 95% confidence interval; PC/GPC – phosphorylcholine/
glycerophosphorylcholine; TMAO – trimethylamine oxide; Pcr – phosphocreatine; p-values were adjusted using the Benjamini–Hochberg procedure 
to control the false discovery rate.

Fig. 3. Venn diagram of the serum metabolic markers 
of luminal A, luminal B, human epidermal growth 
factor 2 (HER2), and triple-negative breast cancer 
(TNBC)
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in  lactate alongside dysregulated choline metabolism, 
as evidenced by altered PC/GPC ratios and choline levels. 
Moreover, HER2-enriched tumors exhibited unique per-
turbations in citrate, creatine/phosphocreatine and 1-meth-
ylhistidine, whereas TNBC were distinguished by altered 
levels of glutamine, taurine, glucose, and threonine.

Diagnostic discrimination of metabolic 
markers related to molecular subtypes

The predictive value of metabolic markers for BC mo-
lecular subtypes was assessed through ROC curve anal-
ysis (Fig. 4). For the luminal A subtype, the combined 
metabolite panel exhibited outstanding discrimination, 
with an AUC of 0.983 (95% confidence interval (95% CI): 
0.918–0.997), while the  subset of  subtype-specific 

metabolites also showed strong predictive performance 
(AUC = 0.858; 95% CI: 0.766–0.950). For the  luminal 
B  subtype, the  combined metabolite panel similarly 
demonstrated excellent discrimination, with an AUC 
of  0.967 (95%  CI: 0.908–0.989), while the  subtype-
specific marker set achieved an AUC of 0.770 (95% CI: 
0.678–0.842). Similar strong predictive performance 
was observed for the  HER2 (AUC  =  0.970; 95%  CI: 
0.898–0.992) and TN (AUC = 0.846; 95% CI: 0.744–
0.912) subtypes.

Pathway analysis of metabolic markers 
related to molecular subtypes

As demonstrated in Fig. 5 and Table 3, KEGG pathway 
enrichment of subtype-associated metabolites revealed 
glycerophospholipid metabolism to be a common altera-
tion across all BC molecular subtypes. In the hormone-
responsive luminal A and B subtypes, additional shared 
pathways included glyoxylate and dicarboxylate metabo-
lism, the citrate (TCA) cycle, arginine and proline metabo-
lism, and primary bile acid biosynthesis.

We found that luminal A tumors uniquely engage mul-
tiple amino acid-related pathways – namely alanine, as-
partate and glutamate metabolism; glycine, serine and 
threonine metabolism; and arginine biosynthesis – along-
side enriched glutathione metabolism as well as cysteine, 
methionine and lipoic acid metabolic routes. In contrast, 
the luminal B subtype was characterized by distinctive 
alterations in energy-related pathways, including taurine 
and hypotaurine metabolism, starch and sucrose metab-
olism, galactose metabolism, pyruvate metabolism, and 
glycolysis/gluconeogenesis. For HER2-positive tumors, 
the dominant metabolic signatures involved glyoxylate 
and dicarboxylate metabolism, the TCA cycle, and argi-
nine and proline metabolism.

The TN subtype is characterized by involvement in pri-
mary bile acid biosynthesis; alanine, aspartate and gluta-
mate metabolism; taurine and hypotaurine metabolism; 
starch and sucrose metabolism; and galactose metabolism.

Serum metabolic markers related to ER 
and HER2 receptor expression

To  assess how ER and HER2 receptor status shapes 
the  metabolic landscape in  BC, we  applied OPLS-DA 
to the serum metabolomic profiles of patients stratified 
by ER and HER2 expression. Metabolites with high VIP 
scores and statistically significant differences accord-
ing to t-test were deemed differentially abundant (Fig. 6; 
Table 4). With respect to ER status, glutamine, citrate, 
the PC/GPC ratio, the TMAO/taurine ratio, choline, cre-
atine/phosphocreatine, and 1-methylhistidine were consis-
tently dysregulated between ER-positive and ER-negative 
groups (Fig. 7). Some metabolites were uniquely altered 
by group: Taurine, glucose and creatinine were specific 

Table 3. Pathway alteration in different molecular subtypes of breast 
cancer

Pathway name Matched 
metabolites Molecular subtype

Glycerophospholipid 
metabolism

PC/GPC
choline

luminal A, luminal B, 
HER2, TN

Glyoxylate and 
dicarboxylate 
metabolism

citrate
glycine

glutamate
glutamine

luminal A, luminal B, HER2

Citrate cycle citrate luminal A, luminal B, HER2

Arginine and proline 
metabolism

creatine/Pcr
glutamate

luminal A, luminal B, HER2

Primary bile acid 
biosynthesis

glycine luminal A, luminal B, TN

Alanine, aspartate and 
glutamate metabolism

glutamate
glutamine

citrate
luminal A, TN

Taurine and hypotaurine 
metabolism

taurine luminal B, TN

Starch and sucrose 
metabolism

glucose luminal B, TN

Galactose metabolism glucose luminal B, TN

Glycine, serine and 
threonine metabolism

choline
glycine

threonine
creatine/Pcr

luminal A

Arginine biosynthesis
glutamate
glutamine

luminal A

Glutathione metabolism
glycine

glutamate
luminal A

Cysteine and methionine 
metabolism

methionine luminal A

Lipoic acid metabolism glycine luminal A

Pyruvate metabolism
lactate
acetate

luminal B

Glycolysis/
gluconeogenesis

lactate
acetate

luminal B

PC/GPC – phosphorylcholine/glycerophosphorylcholine; TN – triple-
negative; Pcr – phosphocreatine; HER2 – human epidermal growth factor 2.



Adv Clin Exp Med. 2026 9

Table 4. Univariate analysis of potential serum biomarkers between different receptor status of breast cancer patients and healthy controls

Metabolites

ER-positive vs healthy 
controls

ER-negative vs healthy 
controls

HER2-positive vs healthy 
controls

HER2-negative vs healthy 
controls

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

SMD
(95% CI)

adjusted 
p-value
for t-test

Valine
–0.65

(–1.00, –0.30)
<0.001

–0.47
(–0.88, –0.07)

0.028
–0.73

(–1.14, –0.31)
0.001

–0.55
(–0.94, –0.20)

0.003

Lactate
1.00

(0.65, 1.35)
<0.001

0.75
(0.34, 1.16)

<0.001
0.81

(0.40, 1.23)
<0.001

0.64
(0.29, 0.99)

<0.001

Glutamine
–0.86

(–1.21, –0.51)
<0.001

–0.55
(–0.97, –0.14)

0.011
–0.86

(–1.28, –0.45)
<0.001

–0.77
(–1.12, –0.42)

<0.001

Citrate
–0.98

(–1.33, –0.62)
<0.001

–0.50
(–0.91, –0.09)

0.021
–1.21

(–1.63, –0.80)
<0.001

–0.68
(–1.03, –0.33)

<0.001

PC/GPC
–1.50

(–1.85, –1.15)
<0.001

–1.15
(–1.56, –0.74)

<0.001
–1.68

(–2.09, –1.27)
<0.001

–1.30
(–1.65, –0.95)

<0.001

TMAO/taurine
–0.66

(–1.01, –0.31)
<0.001

–0.53
(–0.94, –0.12)

0.014
–0.85

(–1.26, –0.43)
<0.001

–0.54
(–0.89, –0.19)

0.004

Taurine
–0.72

(–1.07, –0.37)
<0.001

–0.63
(–1.04, –0.22)

0.004
–0.72

(–1.13, –0.30)
0.001

–0.71
(–1.06, –0.36)

<0.001

Glucose
–0.88

(–1.23, –0.52)
<0.001

–0.60
(–1.01, –0.20)

0.005
–0.80

(–1.22, –0.39)
<0.001

–0.84
(–1.19, –0.49)

<0.001

Choline
–1.45

(–1.80, –1.10)
<0.001

–1.18
(–1.59, –0.76)

<0.001
–1.72

(–2.14, –1.31)
<0.001

–1.26
(–1.61, –0.91)

<0.001

Creatinine
0.43

(0.08, 0.78)
0.019

0.20
(–0.21, 0.61)

0.337
0.28

(–0.13, 0.70)
0.183

0.44
(0.09, 0.79)

0.016

Creatine/Pcr
–0.87

(–1.22, –0.52)
<0.001

–0.75
(–1.16, –0.34)

<0.001
–1.02

(–1.43, –0.61)
<0.001

–0.77
(–1.12, –0.42)

<0.001

1-methylhistidine
–1.08

(–1.43, –0.73)
<0.001

–0.93
(–1.34, –0.51)

<0.001
–1.34

(–1.76, –0.93)
<0.001

–0.94
(–1.29, –0.59)

<0.001

ER – estrogen receptor; HER2 – human epidermal growth factor 2; SMD – standardized mean difference; 95% CI – 95% confidence interval; 
PC/GPC – phosphorylcholine/glycerophosphorylcholine; TMAO – trimethylamine oxide; Pcr – phosphocreatine; p-values were adjusted based 
on Benjamini–Hochberg false discovery rate correction.

Fig. 4. Receiver operating characteristic (ROC) curves 
of metabolic markers for the prediction of breast 
cancer (BC) molecular subtypes; A. ROC curves 
of different combinations of metabolic markers for 
luminal A BC prediction; B. ROC curves of different 
combinations of metabolic markers for luminal B BC 
prediction; C. ROC curve of a combination of metabolic 
markers for human epidermal growth factor 2 (HER2)-
related BC prediction; D. ROC curve of a combination 
of metabolic markers for triple-negative breast cancer 
(TNBC) prediction



Fig. 5. Metabolic pathway alterations in different breast cancer (BC) molecular subtypes. A. Metabolic pathway alterations in the luminal A subtype; 
B. Metabolic pathway alterations in the luminal B subtype; C. Metabolic pathway alterations in the human epidermal growth factor 2 (HER2) subtype; 
D. Metabolic pathway alterations in the triple-negative (TN) subtype; E. Venn diagram of metabolic pathway alterations in luminal A, luminal B, HER2, and TNBC
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Fig. 6. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots for 1H-NMR spectra of sera and variable importance in projection 
(VIP) values of metabolites between healthy controls and breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth 
factor 2 (HER2) expression statuses. A. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with ER+, R2X = 0.387, 
R2Y = 0.747, and Q2 = 0.641; B. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with ER–, R2X = 0.575, R2Y = 0.635, and 
Q2 = 0.532; C. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with HER2+, R2X = 0.312, R2Y = 0.796, and Q2 = 0.631; 
D. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with Her2-, R2X = 0.362, R2Y = 0.712, and Q2 = 0.553

R2X – explained variance in the predictors; R2Y – explained variance in the responses; Q2 – model’s predictive ability.



M. Xu et al. Metabolic markers in breast cancer via NMR12

to the ER-positive group, and lactate was unique to the ER-
negative group. Similarly, common metabolic changes 
in the HER2-positive and HER2-negative groups, including 
glutamine, citrate, PC/GPC, TMAO/taurine, choline, cre-
atine/Pcr, and 1-methylhistidine, were observed for HER2 
receptor status. Changes specific to groups were observed: 
valine was specific for the HER2-positive group, and lac-
tate, taurine and glucose were specific for the HER2-neg-
ative group.

ER and HER2 receptor-related 
metabolomic pathway analysis

The functions and biological pathways predicted and 
significantly enriched by the KEGG pathway analysis are 
presented in Fig. 8 and Table 5, which indicate the meta-
bolic pathways related to ER and HER2 receptor status 
in BC patients. In ER-luminal patients, the most signifi-
cantly enriched pathways were taurine and hypotaurine 
metabolism; starch and sucrose metabolism; alanine, as-
partate and glutamate metabolism; the citrate cycle; glyc-
erophospholipid metabolism; galactose metabolism; glyox-
ylate and dicarboxylate metabolism; arginine and proline 
metabolism; and primary bile acid biosynthesis. Estrogen 
receptor-negative patients presented similar pathway en-
richment patterns, except that taurine and hypotaurine 
metabolism, starch and sucrose metabolism, galactose 
metabolism, and primary cholic acid biosynthesis were 
not significantly affected in this group. The top enriched 
pathways for HER2-positive individuals were alanine, 
aspartate and glutamate metabolism; the citrate cycle; 
glycerophospholipid metabolism; glyoxylate and dicarbox-
ylate metabolism; and arginine and proline metabolism. 
The HER2-negative patients included all the pathways de-
tected in the HER2-positive patients, with further enrich-
ment in taurine and hypotaurine metabolism, starch and 
sucrose metabolism, galactose metabolism, and primary 
bile acid biosynthesis.

Discussion

Breast cancer exhibits pronounced molecular heteroge-
neity, which critically influences both therapeutic response 
and prognosis. Current molecular classification hinges 
on immunohistochemical assessment of ER, PR, HER2, 
and Ki-67; however, intratumoral heterogeneity means that 
biopsy specimens may not fully capture the complexity 
of the entire tumor. Metabolomics has recently emerged 
as a powerful tool for probing the tumor microenviron-
ment – an important determinant of disease progression 
and treatment efficacy.22 By profiling dynamic fluctua-
tions in metabolites, this approach integrates information 
on tumor biology, genetic alterations and environmental 
exposures, offering a more comprehensive view of cancer 
behavior than static tissue markers alone.

Table 5. Pathway alteration in breast cancer with different ER and HER2 
receptor expression

Pathway name Matched 
metabolites Molecular subtype

Alanine, aspartate and 
glutamate metabolism

glutamine
citrate

ER+ ER– HER2+ HER2–

Glyoxylate and dicarboxylate 
metabolism

citrate
glutamine

ER+ ER– HER2+ HER2–

Glycerophospholipid 
metabolism

PC/GPC
choline

ER+ ER– HER2+ HER2-

Citrate cycle (TCA cycle) citrate ER+ ER– HER2+ HER2–

Arginine and proline 
metabolism

creatine/Pcr ER+ ER– HER2+ HER2–

Starch and sucrose metabolism glucose ER+ HER2–

Primary bile acid biosynthesis taurine ER+ HER2–

Taurine and hypotaurine 
metabolism

taurine ER+ HER2–

Galactose metabolism glucose ER+ HER2–

PC/GPC – phosphorylcholine/glycerophosphorylcholine; 
Pcr – phosphocreatine; HER2 – human epidermal growth factor 2; 
ER – estrogen receptor.

Fig. 7. Venn map of the serum metabolic markers of breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth factor 2 
(HER2) expression statuses. A. Venn map of the serum metabolic markers of BC patients who are ER positive or ER negative; B. Venn map of the serum 
metabolic markers of HER2 positive or HER2 negative BC patients



Fig. 8. Metabolic pathway alterations in molecular breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth factor 2 
(HER2) expression statuses. A. Metabolic pathway alterations in ER-positive BC patients; B. Metabolic pathway alterations in ER-negative BC patients; 
C. Metabolic pathway alterations in HER2-positive BC patients; D. Metabolic pathway alterations in HER2-negative BC patients; E. Venn diagram of metabolic 
pathway alterations in molecular BC patients with different ER and HER2 expression statuses
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In  this study, we  investigated the  serum metabolic 
profiles of 4 molecular subtypes of BC patients and com-
pared them with those of healthy controls, confirming 
that the identified metabolic signatures can discriminate 
among subtypes with high predictive performance. Re-
ceiver operating characteristic curve analyses confirmed 
that these serum metabolic signatures exhibited excellent 
discriminatory and predictive performance for molecular 
typing. Moreover, we discovered metabolic markers linked 
to ER and HER2 receptor status, revealing varying meta-
bolic profiles between the receptor-positive and receptor-
negative cohorts. Pathways related to energy metabolism, 
amino acid metabolism and phospholipid metabolism were 
significantly different in terms of the metabolic heteroge-
neity of each BC subtype.

The 4 molecular subtypes presented different metabolite 
compositions. Distinct metabolic signatures were identi-
fied for each subtype as promising biomarkers. Previous 
studies have shown that serum levels of amino acids in less 
aggressive luminal A cancers are lower than those in more 
aggressive TNBCs.23,24 Our results corroborate these re-
ports, as  the  luminal A-specific metabolic alterations 
mainly included amino acids, indicating subtype-specific 
amino acid metabolism.

Importantly, excessive acetate accumulation was specifi-
cally observed in luminal B patients, suggesting a distur-
bance in the level of acetate-acetyl-CoA conversion. All 
4 subtypes had decreased glucose levels and increased lac-
tate levels, with HER2-positive tumors having the greatest 
increase in lactate. This finding is consistent with our re-
cent work showing an increased Warburg effect in HER2-
positive BC cells,25,26 emphasizing the metabolic hetero-
geneity between molecular subtypes.

Common alterations in phospholipid metabolism, par-
ticularly with respect to PC/GPC and choline, were pres-
ent across all subtypes. Other studies have shown similar 
phenomena in several types of cancer, implying that phos-
pholipid metabolism plays a vital role in cancer develop-
ment.27–29 Notably, BC cells showed reduced ̂ 13C-labeled 
choline and phosphocholine levels relative to normal mam-
mary epithelial cells, suggesting an enhanced metabolic 
flux from membrane phosphatidylcholine toward free 
choline and phosphate in malignancy.30

In luminal BC, we identified 7 metabolic pathways that 
were uniquely and highly enriched: glycine, serine and 
threonine metabolism; arginine biosynthesis; glutathione 
metabolism; cysteine and methionine metabolism; lipoic 
acid metabolism; pyruvate metabolism; and glycolysis/
gluconeogenesis.

Tumors stratified by ER status (luminal vs non-luminal) 
exhibited distinct metabolic signatures, with significant 
enrichment in pathways such as starch and sucrose me-
tabolism, protocholic acid biosynthesis, taurine and hypo-
taurine metabolism, and galactose metabolism.

However, hormone receptor-positive BC cells are 
typically more differentiated and exhibit higher levels 

of proliferation-associated metabolites than hormone re-
ceptor-negative TNBC cells.31–33 We also identified distinct 
metabolite accumulation patterns in HER2-positive BC 
patients compared to healthy controls, implicating path-
ways such as glycerophospholipid metabolism, glyoxylate 
and dicarboxylate metabolism, the TCA cycle, and argi-
nine and proline metabolism. Notably, these same path-
ways were enriched in luminal B tumors, likely reflecting 
the subset of luminal B cancers that co-express HER2 and 
thus share similar metabolic phenotypes.34

The serum metabolic characteristics of these molecu-
lar subtypes may provide a noninvasive diagnostic tool 
to complement immunohistochemical typing, especially 
when tumor tissue is limited or heterogeneous. These find-
ings indicate that our subtype-specific metabolic signa-
ture can be used for targeted therapy development, e.g., 
by targeting amino acid metabolism in luminal subtypes 
and inhibiting the glycolysis pathway in HER2-positive 
patients. Furthermore, longitudinal profiling of  these 
metabolic biomarkers may enable real-time monitoring 
of therapeutic response and disease trajectory, facilitating 
the early detection of emerging drug resistance or tumor 
recurrence. Markers correlated with ER and HER2 status 
may also predict responsiveness to endocrine or HER2-
targeted therapies, enabling more personalized treatment 
strategies.

Interestingly, we observed a  strong overlap between 
the  metabolic pathways distinguishing HER2-positive 
from HER2-negative patients and those differentiating 
ER-positive from ER-negative cases; notably, these shared 
pathways include starch and sucrose metabolism, primary 
bile acid biosynthesis, taurine and hypotaurine metabo-
lism, and galactose metabolism. This novel finding indi-
cates potential crosstalk between receptor signaling and 
metabolic regulation,35 which needs to be further investi-
gated at the molecular level.

Limitations

Despite these promising results, several limitations war-
rant consideration. First, our relatively small, single-center 
cohort limits statistical power and the generalizability 
of our findings to broader patient populations. Second, 
the cross-sectional design prevents us from drawing causal 
inferences about how metabolic alterations evolve with 
disease progression or in response to therapy; longitudinal 
sampling would be required to capture these dynamics. 
Third, although we detected a wide range of metabolites, 
current analytical platforms may have missed other rel-
evant compounds, and the high cost of metabolomic assays 
poses practical challenges for large-scale validation. Fi-
nally, unmeasured confounders, such as variations in diet, 
concomitant medications and comorbid conditions, were 
not fully controlled and could have influenced the ob-
served metabolic signatures. Future studies should ad-
dress these issues by enrolling larger, multicenter cohorts, 
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incorporating longitudinal designs and standardizing pre-
analytical variables to confirm and extend our findings.

Conclusions

In this study, we utilized 1H NMR metabolomics to iden-
tify serum metabolic signatures in patients with various 
molecular subtypes of BC. Through comprehensive me-
tabolomic profiling, we explored the distinct metabolic 
features and pathways linked to each subtype, as well 
as the relationship between serum metabolites and the ex-
pression levels of ER and HER2 receptors. Our findings 
contribute to a deeper understanding of subtype-specific 
metabolic reprogramming in BC and may help uncover 
novel biomarkers for molecular-based classification.

Our analysis identified distinct serum metabolomic 
signatures corresponding to BC molecular subtypes and 
receptor profiles, demonstrating metabolomics’ prom-
ise as a noninvasive tool for tumor classification. These 
subtype-specific metabolic patterns offer complemen-
tary insights to conventional diagnostics and could guide 
the personalization of therapy. The markers we describe 
warrant further validation for enhancing patient stratifica-
tion and optimizing treatment selection.

The next steps toward clinical translation include validat-
ing these metabolic markers in larger, multicenter cohorts, 
establishing population-specific cutoff values, and assess-
ing their ability to predict treatment response in prospec-
tive clinical trials. Ultimately, metabolic profiling could 
offer powerful, noninvasive insights for BC diagnosis, real-
time treatment monitoring, and the identification of novel 
therapeutic targets, thereby enriching patient care.
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