AHEAD OF PRINT

Screening of metabolic markers related to molecular typing
of breast cancer based on 'H NMR metabonomics

*Man Xu"*?, *Wenbin Huang?®, Xinping Huang'<, Hailong Shu>®, Weixiao Ke*<, Yongcheng Zhang?", Yongxia Yang®*f

T College of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China

2 Department of Breast Care Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China

3 College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China

* Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, China

A — research concept and design; B — collection and/or assembly of data; C — data analysis and interpretation;
D — writing the article; E — critical revision of the article; F — final approval of the article

Advances in Clinical and Experimental Medicine, ISSN 1899-5276 (print), ISSN 2451-2680 (online)

Address for correspondence
Yongxia Yang
E-mail: yangyongxia@gdpu.edu.cn

Funding sources

This work was supported by the National Natural Science
Foundation of China (grants No. 22074024 and No. 21005022)
and the Natural Science Foundation of Guangdong Province
(grants No. 2022A1515012045 and No. 2023A1515012573).

Conflict of interest
None declared

*Man Xu and Wenbin Huang contributed equally to this work.

Received on December 26, 2024
Reviewed on March 20, 2025
Accepted on April 24,2025

Published online on January 12, 2026

Citeas

XuM, Huang W, Huang X, et al. Screening of metabolic
markers related to molecular typing of breast cancer based
on 'H NMR metabonomics [published online as ahead

of print on January 12, 2026]. Adv Clin Exp Med. 2026.
d0i:10.17219/acem/204347

DOI
10.17219/acem/204347

Copyright

Copyright by Author(s)

Thisis an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CCBY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Adv Clin Exp Med. 2026

Abstract

Background. Breast cancer (BC) is a heterogeneous disease classified into 4 molecular subtypes, each with
distinct molecular characteristics that influence treatment strategies, clinical outcomes and prognosis. These
subtypes are associated with specific changes in cellular metabolism, which may play a crucial role in tumor
development and progression.

Objectives. Toidentify distinctive serum metabolic biomarkers for each molecular BC subtype and to evaluate
their associations with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) receptor status,
thereby refining molecular classification and informing personalized treatment strategies.

Materials and methods. The study utilized the proton nuclear magnetic resonance ('H NMR) metabolomics
method to collect serum metabolic profiles from BC patients. Pattern recognition analysis was employed
to analyze the metabolic data. Metabolic markers specific to each molecular subtype were selected, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to explore
serum metabolic pathway heterogeneity.

Results. Distinct metabolic markers were identified for each molecular subtype, demonstrating strong
discriminatory power. Additionally, we identified specific serum metabolites whose levels correlate with
ER and HER2 expression profiles. The KEGG pathway analysis revealed significant heterogeneity in serum
metabolic pathways across different subtypes.

Conclusions. This study demonstrates pronounced metabolic differences across BC subtypes that mirror
their distinct molecular profiles and may underlie variations in therapeutic response. These metabolomic
insights hold promise for refining tumor classification, improving diagnostic accuracy and guiding more
personalized treatment strategies.
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Highlights

4 breast cancer (BC) molecular subtypes.

phospholipid metabolism.

« Proton nuclear magnetic resonance (‘\H NMR) metabolomics identifies distinct serum metabolic markers for
+ Choline and glycerophosphorylcholine levels significantly change across all subtypes, indicating altered glycero-

+ Metabolic markers associated with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) receptor
expression demonstrate strong predictive value for molecular typing.

« Pathway analysis highlights subtype-specific disturbances in energy, amino acid and lipid metabolism.

« Findings suggest that serum metabolite profiles may guide personalized diagnosis and treatment of BC patients.

Introduction

Breast cancer (BC) is among the most common malig-
nancies worldwide. According to the International Agency
for Research on Cancer (IARC) of the World Health Orga-
nization (WHO), in 2022, BC became the most frequently
diagnosed cancer globally — surpassing lung cancer — with
2.3 million new cases and nearly 665,000 deaths.! Since
the mid-2000s, the incidence of female BC has steadily
increased by approx. 0.6% per year.3

Breast cancer treatment has evolved dramatically over
the past several decades and now encompasses a multi-
modal approach, including surgery combined with systemic
therapies — chemotherapy, endocrine therapy and targeted
agents — as well as radiotherapy. These integrated strategies
have substantially improved patient survival; however, sig-
nificant heterogeneity remains in treatment responses and
long-term outcomes across different patient subgroups.*

Breast cancer is a heterogeneous disease classified into
4 main molecular subtypes based on the expression of es-
trogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), and the prolifera-
tion marker Ki-67.> Luminal A tumors are ER-positive, HER2-
negative, have PR expression 220%, and Ki-67 <14%; luminal
B tumors are also ER-positive but may be HER2-negative
or -positive, with PR <20% or Ki-67 >14%; the HER2-enriched
subtype is ER-negative, PR-negative and HER2-positive; and
triple-negative BCs (TNBCs) lack ER, PR and HER2 expres-
sion. Clinical presentation, tumor biology and therapeutic
responsiveness vary markedly across molecular subtypes,®
making subtype classification a cornerstone of treatment
decision-making.” Luminal A tumors — the most common
subtype — exhibit robust responses to endocrine therapy but
derive minimal benefit from chemotherapy,® whereas luminal
B cancers typically necessitate combined hormone therapy
and cytotoxic chemotherapy to achieve optimal outcomes.’

HER2-positive/ER-negative tumors are often associated
with aggressive, advanced disease and require targeted
anti-HER2 therapies.!? Triple-negative BC, which accounts
for roughly 20% of all BC, is typically more aggressive than
other subtypes; it disproportionately affects younger pa-
tients, presents with poorly differentiated histology and

advanced stage at diagnosis, and carries a high risk of lo-
cal recurrence and distant metastasis, resulting in poorer
outcomes and survival.l!

The heterogeneous treatment responses across these
molecular subtypes underscore the imperative for per-
sonalized therapeutic strategies. Surgical intervention
is the primary therapy for early-stage disease, whereas
systemic therapies are used in both adjuvant and neo-
adjuvant settings. Endocrine therapy continues to be
the cornerstone for hormone receptor-positive BC, while
HER2-targeted agents have revolutionized outcomes
in HER2-positive disease, and emerging immunothera-
pies are showing enhanced efficacy in TNBC. Optimizing
treatment approaches on the basis of each subtype is cru-
cial for achieving the most favorable results for patients.

Metabolomics is the comprehensive characterization
of small-molecule metabolites in cells, tissues, organs, and
whole organisms that respond to intrinsic or extrinsic fac-
tors.!2 Metabolomics, a powerful “omics” approach, has
the potential to facilitate early disease detection and uncover
novel therapeutic targets by profiling metabolites downstream
of gene and protein activity.!® Beyond revealing biochemical
alterations, it uniquely captures in vivo phenotypic changes
that may be missed by genomic and proteomic analyses.

Recent metabolomic approaches have greatly improved
our understanding of BC biology. TBK1-mediated meta-
bolic processes in cancer cells have emerged as a hallmark
of metabolic reprogramming, with each molecular subtype
exhibiting a distinct metabolic signature.!* For example,
an liquid chromatography—high-resolution mass spectrom-
etry (LC-HRMS)-based plasma metabolomic study in BC pa-
tients revealed subtype-specific alterations in the porphyrin,
chlorophyll and glycerophospholipid metabolic pathways.!®
The use of metabolomics in BC has grown exponentially
in recent years. These alterations in cellular metabolism have
been characterized into several important pathways that are
critical for BC initiation and progression.!® Enhanced aerobic
glycolysis, the classic Warburg effect, is a consistent feature
of aggressive BC subtypes. Metabolomic profiling has also
uncovered distinctive alterations in amino acid turnover and
fatty acid p-oxidation that map to specific molecular sub-
types, highlighting their unique metabolic reprogramming.”
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Objectives

Recent investigations have identified metabolic signa-
tures that predict both treatment response and resistance.
For instance, specific alterations in metabolic pathways
have been linked to endocrine therapy resistance in hor-
mone receptor-positive BC.!® Moreover, the combination
of metabolomics with other omics data has provided new
therapeutic targets and a better understanding of drug re-
sistance.!” The metabolic features that underlie the differ-
ent molecular subtypes of BC are still poorly understood,
despite progress in BC treatment. We hypothesized that
distinct molecular subtypes of BC have unique metabolic
signatures detectable in the serum of patients and that
these metabolic profiles correlate closely with the expres-
sion status of key receptors, ER and HER2. Moreover,
the detection of these subtype-specific metabolic signa-
tures may offer valuable information regarding BC biol-
ogy and help guide individualized treatment initiatives.

This study aimed to reveal metabolic differences be-
tween BC patients and healthy controls and explore
the biochemical pathways affected by different molecular
subtypes of BC patients.

Materials and methods
Study population

A total of 117 BC patients and 55 healthy control subjects
were enrolled at the First Affiliated Hospital of Guangdong
Pharmaceutical University (Guangzhou, China) between
January 2020 and December 2024. Sample size was deter-
mined with power analysis (« = 0.05, power = 0.8) to ensure
the detection of clinically meaningful metabolic differences.

The patient inclusion criteria were as follows: 1) histo-
logically confirmed, newly diagnosed BC with molecular
subtype determined with ER, PR, HER2, and Ki-67 status;
2) no prior oncologic treatment; and 3) absence of other
malignancies or serious systemic illnesses. Healthy con-
trols were age-matched healthy women with normal clinical
examinations and no history of cancer or severe disease.

This study was approved by the Medical Ethics Commit-
tee of the First Affiliated Hospital of Guangdong Pharma-
ceutical University (approval No. 2022KT81).

Biological material collection
and processing

Blood samples were collected from all participants after
12 h of fasting and centrifuged at 4°C at 3,000 rpm for
10 min to obtain the serum. For nuclear magnetic reso-
nance (NMR) analysis, 300 pL of serum was mixed with
150 pL of phosphate-buffered saline (PBS) (0.2 mol/L,
pH 7.4) and 100 pL of D,O in 5 mm NMR tubes after re-
centrifugation (3,000 rpm, 10 min, 4°C).

Assay methods and data preprocessing

High-resolution proton NMR spectra were acquired
on a Bruker AVANCE III 500 MHz superconducting
NMR spectrometer (Bruker Inc., Karlsruhe, Germany).
The pulse sequence was Carr—Purcell-Meiboom-Gill
(CPMGQ@). Proton NMR spectra were acquired at 298 K
with an echo time of 100 ms and a relaxation delay of 3 s.
The spectral width was set to 10 kHz, and 128 scans
were collected for each spectrum. Data were processed
in TopSpin 4.1 (Bruker Inc.), where manual phase correc-
tion and baseline adjustment were performed. Chemical
shifts were calibrated using the lactate methyl doublet
at 1.33 ppm. Spectral integration was performed in AMIX
v. 4.0.2 (Bruker Inc.) using 0.004 ppm buckets across
the 0.5-9.0 ppm range. The 4.7-5.5 ppm region was ex-
cluded to remove residual water signals, and the resulting
integrals were normalized to the total spectral area.

Metabolic marker selection and analysis

Previous studies have demonstrated that BC is charac-
terized by dysregulation of key metabolic pathways, in-
cluding glucose metabolism, amino acid metabolism and
lipid metabolism, which together reflect hallmark features
of malignancy such as the Warburg effect, altered protein
synthesis and membrane lipid remodeling. The metabolic
markers were identified through signals in the proton
nuclear magnetic resonance (*H NMR) spectra, which
represent metabolites in the serum samples. The integral
data of these metabolites were used for orthogonal par-
tial least squares discriminant analysis (OPLS-DA) analy-
sis to distinguish between healthy controls and patients
with BC. Specifically, we analyzed signals in the range
of 0.5-9.0 ppm, with the integral from 4.7-5.5 ppm set
to 0 to eliminate the influence of residual water signals.

Outcome measures

The study outcome measures focused on the metabolic
differences between healthy controls and BC patients, as as-
sessed through OPLS-DA. These measurements include in-
tegral data from 'H spectra obtained using NMR technology,
as well as characteristic metabolites of different BC molecu-
lar subtypes analyzed via MetaboAnalyst 6.0 (http://www.
metaboanalyst.ca) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.kegg.jp) .

Statistical analyses

The processed spectral data from 172 participants
(55 healthy controls, 30 luminal A, 46 luminal B, 23 HER2-
positive, and 18 triple-negative (TN) patients) were analyzed
using OPLS-DA in MetaboAnalyst 6.0. As an exploratory
metabolomics approach, we constructed OPLS-DA mod-
els for 2 sets of comparisons. We first compared healthy
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controls (n = 55) with each BC molecular subtype — lumi-
nal A (n = 30), luminal B (n = 46), HER2-positive (n = 23),
and TN (n = 18), and then stratified patients by receptor
status and compared controls with ER-positive (n = 76),
ER-negative (n = 41), HER2-positive (n = 40), and HER2-
negative (n = 77) groups. Model performance was validated
using 7-fold cross-validation, evaluating explained variance
in the predictors (R?X), explained variance in the responses
(R?Y) and the model’s predictive ability (Q?). Following
OPLS-DA model construction, score plots were generated
via MetaboAnalyst 6.0 for data visualization.

Potential differentially abundant metabolites were se-
lected on the basis of variable importance in projection
(VIP) scores greater than 1.0. For univariate analysis,
we first tested the normality assumption via the Shapiro—
Wilk test and the homogeneity of variances via Levene’s
test. The discriminatory ability of different metabolite
combinations between BC subtypes and healthy controls
was evaluated by calculating the area under the receiver
operating characteristic (ROC) curve (AUC). Venn dia-
grams were constructed to identify shared and unique
metabolites among different BC subtypes.

Although this exploratory approach entails multiple
comparisons and may increase the risk of type I errors,
we applied the Benjamini—Hochberg false discovery
rate correction, a more permissive method, to maximize
the identification of potential metabolic alterations, defin-
ing statistical significance as an adjusted p < 0.05.

For metabolic pathway analysis, we utilized both
the KEGG database (http://www.kegg.jp) and the Metabo-
Analyst 6.0 online service. The KEGG analysis was per-
formed via KEGG Mapper 2.5, with a focus on Homo sa-
piens pathways. In MetaboAnalyst, pathway analysis was
conducted via the H. sapiens KEGG pathway library.

Pathway analysis was performed using 2 complemen-
tary methods: enrichment analysis via the hypergeo-
metric test to identify pathways overrepresented among
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the differentially abundant metabolites, and topology analy-
sis based on relative-betweenness centrality to gauge each
metabolite’s network importance. Pathways with impact val-
ues greater than 0.1 and false discovery rate (FDR)-adjusted
p-values below 0.05 were considered significantly altered.

Results

Clinical characteristics of patients
and healthy controls

A total of 172 participants were enrolled: 55 healthy con-
trols and 117 BC patients, stratified by molecular subtype
into 30 luminal A, 46 luminal B, 23 HER2-positive, and
18 TNBC cases. Baseline demographic and clinical char-
acteristics are summarized in Table 1.

Independent 2-tailed t-tests demonstrated no signifi-
cant differences in mean age between healthy controls
and each BC subtype: luminal A (tg; = 1.54, p = 0.127),
luminal B (tgg = 0.33, p = 0.740), HER2-positive (t;5 = 0.68,
p = 0.500), or TNBC (t7; = 0.92, p = 0.361). Likewise, body
mass index (BMI) did not differ significantly between con-
trols and patients across subtypes: luminal A (tg3 = 1.25,
p = 0.216), luminal B (tyg = 1.50, p = 0.136), HER2-positive
(tz = 1.50, p = 0.136), or TNBC (t;, = 0.38, p = 0.703).

Serum 'H-NMR spectra pattern recognition
analysis and characteristic metabolite
identification

The representative serum 'H-NMR spectra from healthy
controls and patients with 4 subtypes of BC are presented
in Fig. 1. On the basis of the Human Metabolome Da-
tabase (HMDB; https://www.hmdb.ca)) and related lit-
erature reports,>®! 24 endogenous metabolites were
identified. The OPLS-DA results of the 'H-NMR data

Table 1. Clinical characteristics of healthy control participants and breast cancer patients of different subtypes

Characteristics Heal(;hi g(;?trol Ll(Jnm:in;oI)A
Age [years] 5522 +14.83 612941643
Mean £5D
EAAQ;E]ki/S VBQJ 223343.11 23584241
Il\(l%\) stage Tis, _ 6 (20.0)
IN(% stage |, _ 8(26.7)
P\(% stage Il _ 12 (40.0)
EN(%\)stage I, _ 4(13.3)
Il\(lgﬁ) stage IV, _ 0(0)

Luminal B
(n=46)

54.17 +13.56 58.18 £19.18 51.20+16.97
2326 +2.92 2493 +7.87 21.90 +4.33
1.2 2(87) 0(0)
9(19.6) 2(87) 2(11.1)
25 (54.3) 12(52.2) 10 (55.6)
6(13.0) 7(30.4) 6(33.3)

5(109) 0(0) 0(0)

SD - standard deviation; TN - triple negative type; TNM — tumor node metastasis; BMI — body mass index; Tis — tumor in situ; HER2 — human epidermal

growth factor 2.
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from healthy controls and patients with BC are shown
in Fig. 2. The score plots revealed significant metabolic
differences between the serum samples of the 4 MSs
and healthy controls. Metabolites with VIP >1 were sub-
jected to Student’s t test, and the results are summarized
in Table 2. Serum metabolic markers of the 4 MSs were
subsequently screened on the basis of the VIP values and
statistical analysis results. In the luminal A subtype co-
hort, metabolomic profiling revealed significant eleva-
tions in glutamate (t[83] = 3.49, FDR-p = 0.002), glutamine
(t[83] = 5.61, FDR-p < 0.001), citrate (t[83] = 3.75, FDR-
p = 0.001), phosphorylcholine/glycerophosphorylcholine
(PC/GPC; t[83] = 6.46, FDR-p < 0.001), glycine (t[83] = 3.78,
FDR-p < 0.001), threonine (t[83] = 4.23, FDR-p < 0.001),
choline (t[83] = 6.54, FDR-p < 0.001), creatine/phospho-
creatine (Cr/Pcr; t[83] = 4.70, FDR-p < 0.001), 1-methyl-
histidine (t[83] = 5.61, FDR-p < 0.001), and methionine
(t[83] = 4.00, FDR-p < 0.001) relative to controls.
Conversely, the luminal B subgroup exhibited distinct
metabolic patterns with increased lactate (t[99] = 3.37,
FDR-p = 0.003) and acetate (t[99] = 4.28, FDR-p < 0.001),
alongside significant reductions in citrate (t[99] = 5.27,
FDR-p < 0.001), phosphorylcholine/glycerophosphoryl-
choline (PC/GPC) (t[99] = 7.74, EDR-p < 0.001), trimethyl-
amine oxide (TMAO)/taurine (t[99] = 3.21, FDR-p = 0.004),

W *”MM’#" )“ W'WWM W /_AJU

1 \
o w\w ‘W W 'www gy

e LR
(
WWWWM’ MW nJ’WA Wy /,,\JL‘)J M_Mu
} )

C W
/W ‘ |
W Wh! " ’””‘WW“ "o %’JWJ $
’ |\ \(\h

taurine (t[99] = 3.94, FDR-p = 0.0008), glucose (t[99] = 4.67,
FDR-p < 0.0008), choline (t[99] = 7.63, EDR-p < 0.001), Cr/
Per (t[99]=4.07, FDR-p < 0.001), and 1-methylhistidine
(t[99] = 5.34, FDR-p < 0.001) (Table 2).

HER2-positive tumors demonstrated characteris-
tic metabolic perturbations, marked by elevated lactate
(t[76] = 3.87, FDR-p < 0.001) and diminished levels of ci-
trate (t[76] = 3.37, FDR-p = 0.003), PC/GPC (t[76] = 5.31,
FDR-p < 0.001), choline (t[76] = 5.48, FDR-p < 0.001), Cr/
Pcr (t[76] = 3.27, FDR-p = 0.004), and 1-methylhistidine
(t[76] = 4.01, FDR-p < 0.001).

The TNBC cohort displayed the most pronounced meta-
bolic dysregulation, featuring increased lactate (t[71] = 2.24,
FDR-p = 0.043) alongside decreased concentrations of glu-
tamine (t[71] = 2.22, FDR-p = 0.045), PC/GPC (t[71] = 3.13,
FDR-p = 0.005), taurine (t[71] = 3.11, FDR-p = 0.005), glu-
cose (t[71] = 3.02, FDR-p = 0.007), threonine (t[71] = 2.12,
FDR-p = 0.043), and choline (t[71] = 3.25, FDR-p = 0.004).

Venn diagram of metabolic markers
related to molecular subtypes

Figure 3 shows that choline and the phosphocholine/glyc-
erophosphocholine (PC/GPC) ratio was significantly dysregu-
lated across all BC subtypes. In the hormone-receptor-positive

| (1
b W g

Fig. 1. Representative Carr-Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance (NMR) 'H spectra of sera from different participants.

A. Representative NMR 'H spectra of sera from healthy controls; B. Representative NMR 'H spectra of sera from luminal A breast cancer (BC) patients;

C. Representative NMR 'H spectra of sera from luminal B BC patients; D. Representative NMR 'H spectra of sera from human epidermal growth factor 2
(HER2) BC patients; E. Representative NMR 'H spectra of sera from triple-negative breast cancer (TNBC) patients. The metabolites identified in the spectrum
are labeled as follows: 1. lipids, 2. leucine/isoleucine, 3. valine, 4. lactate, 5. alanine, 6. acetate, 7. N-acetyl compound, 8. methionine, 9. glutamate,

10. acetoacetate, 11. glutamine, 12. citrate, 13. creatine/Pcr, 14. choline, 15. phosphocholine/glycerophosphocholine, 16. trimethylamine N-oxide/taurine,
17.taurine, 18. glycine, 19. myo-inositol, 20. threonine, 21. glucose, 22. creatinine, 23. tyrosine, 24. 1-methylhistidine



Fig. 2. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots for 'H-NMR spectra of sera and variable importance in projection (VIP)
values of metabolites between healthy controls and 4 subtypes of breast cancer (BC) patients. A. OPLS-DA score plot and VIP values of metabolites for
healthy controls and luminal A BC patients, R?X = 0.327, R?Y = 0.82, Q* = 0.650; B. OPLS-DA score plot and VIP values of metabolites for healthy controls and
luminal B BC patients, R?X = 0.360, R%Y = 0.801, Q? = 0.669; C. OPLS-DA score plot and VIP values of metabolites for healthy controls and human epidermal
growth factor 2 (HER2) BC patients, R?X = 0.526, R?Y = 0.724, Q> = 0.515; D. OPLS-DA score plot and VIP values of metabolites for healthy controls and triple-
negative breast cancer (TNBC) patients, R?X = 0.27, R?Y = 0.838, @* = 0.518

R?X — explained variance in the predictors; R?Y — explained variance in the responses; Q> - model’s predictive ability.



Adv Clin Exp Med. 2026

Table 2. Univariate analysis of potential serum biomarkers between 4 subtypes of breast cancer patients and healthy controls

Luminal A vs healthy controls

Metabolites SMD
(95% Cl)
Lactate (0_3?.,716,21 )
Glutamate -1 ‘2_5(3‘7_?)34)
Glutamine (71,7731,'2—3.82)
Citrate (-1 _3_(()){%).40)
PC/GPC 1 ;;ﬁ 02)
TMAO/taurine -1 '2710;7,%.30)
Taurine o o
(-1.09,-0.18)
Glycine (-1 3_ ?,‘%%.40)
Glucose (-1 .272,'%%.35)
Threonine (_1_;10,‘9—%51)
Choline 1 9_41,‘?? 03)
Creatine/Pcr (-1 ,5721;%,61)
1-Methylhistidine -1 _7_(]),.2—%,80)
Methionine (-1 .3_2,‘(—31)'45)
Acetate (—0.25?2.53)

adjusted
p-value
for t-test

0.003

0.002

<0.001

0.001

<0.001

0.003

0.011

<0.001

0.002

<0.001

<0.001

<0.001

<0.001

<0.001

0.757

SMD
(95% Cl)

0.67
(0.28,1.07)

-0.57
(-0.96,-0.17)

-0.77
(-1.16,-0.37)

-1.05
(-1.45,-0.66)

-1.55
(-1.94,-1.15)

-0.64
(-1.04,-0.24)

-0.79
(-1.18,-0.39)

-0.50
(-0.87,-0.13)

-0.93
(-1.33,-0.54)

-0.72
(-1.11,-032)

=152
(-1.92,-1.13)

-0.81
(-1.21,-042)

-1.07
(-1.46,-0.67)

-0.27
(-0.66,0.13)

0.85
(0.46, 1.25)

Luminal B vs healthy controls

adjusted
p-value
for t-test

0.003

0.009

<0.001

<0.001

<0.001

0.004

<0.001

0.014

<0.001

0.001

<0.001

<0.001

<0.001

0.208

<0.001

HER2 vs healthy controls TNBC vs healthy controls

SMD adjusted SMD adjusted

o) | Pl | oo | PRRRe
(0.4%,9 16.46) <0001 (o.o%,5 18.09) 0043
(-0.23%,3 0 3) 0167 -1 .1_26-%.05) 0046
comoon | %7 | (iiacoos | 0%
-1 .3_2,%.34) 0003 (—021,1845) 0744
1 .5;21,.3—?182) <0001 “1 .3_3,'%?).3 1) 0.005
ciooo00m | % | Ciovoey | 012
(—05?,43.09) 0125 1 .3_3,'%?).30) 0005
(-022,13.37) 0648 (—O._S%,O 350) 0885
(fo;?',%.oe) 0122 1 .32%.28) 0007
(—oé(;',3 o 2) 0158 1 .1_3,'5—?).03) 0043
1 .5;61,.3—?186) <0001 “1 ,;g,'%%.m) 0.004
13 10,'?10.32> 0004 1 71%5 503) 0052
1 .;9],'(3%.50) <0001 1 2_86—%1 2) 0028
(—o}?i,z 325) 0358 -1 5%%309) 0123
g 0621 DG 0219

TNBC - triple-negative breast cancer; SMD - standardized mean difference; 95% Cl - 95% confidence interval; PC/GPC - phosphorylcholine/
glycerophosphorylcholine; TMAQO - trimethylamine oxide; Pcr — phosphocreatine; p-values were adjusted using the Benjamini-Hochberg procedure

to control the false discovery rate.

luminal A and B tumors, we additionally
observed consistent alterations in citrate,
creatine/phosphocreatine and 1-methyl-
histidine levels alongside PC/GPC and
choline, reflecting a shared metabolic phe-
notype in endocrine-responsive cancers.
However, each subtype presented distinct
metabolic patterns. Luminal A is charac-
terized by unique alterations in glutamate,
glutamine, glycine, threonine, and methio-
nine, whereas luminal B displays specific
changes in lactate, TMAOQ, taurine, glucose,
and acetate. In the HER2-enriched and TN
subtypes, we observed consistent elevations

Fig. 3. Venn diagram of the serum metabolic markers
of luminal A, luminal B, human epidermal growth
factor 2 (HER2), and triple-negative breast cancer
(TNBQ)



Table 3. Pathway alteration in different molecular subtypes of breast
cancer

Matched
Pathway name . Molecular subtype
Y ‘ metabolites yp
Glycerophospholipid PC/GPC luminal A, luminal B,
metabolism choline HER2, TN
citrate
Glyoxylate and Ivcine
dicarboxylate gy luminal A, luminal B, HER2
X glutamate
metabolism ¢
glutamine
Citrate cycle citrate luminal A, luminal B, HER2
Arginine and proline creatine/Pcr ) )
9 ) P / luminal A, luminal B, HER2
metabolism glutamate
Primary bil i ) ) ;
rimary 2 cac E glycine luminal A, luminal B, TN
biosynthesis
) glutamate
Alanine, aspartate and ) )
) glutamine luminal A, TN
glutamate metabolism :
citrate
Taurine and hypotaurine : )
ur ) ypotaur taurine luminal B, TN
metabolism
rch an T )
Starch a .d sucrose glucose luminal B, TN
metabolism
Galactose metabolism glucose luminal B, TN
choline
Glycine, serine and lycine )
ycine, ) gyc”? luminal A
threonine metabolism threonine
creatine/Pcr
. ) ) lutam )
Arginine biosynthesis guta gte luminal A
glutamine
) ) lycine )
Glutathione metabolism gy luminal A
glutamate
Cysteine and methionine - )
Y : methionine luminal A
metabolism
Lipoic acid metabolism glycine luminal A
) lactate :
Pyruvate metabolism luminal B
acetate
Glycolysis, lactate )
ycolysis/ ) a luminal B
gluconeogenesis acetate

PC/GPC - phosphorylcholine/glycerophosphorylcholine; TN - triple-
negative; Pcr — phosphocreatine; HER2 — human epidermal growth factor 2.

in lactate alongside dysregulated choline metabolism,
as evidenced by altered PC/GPC ratios and choline levels.
Moreover, HER2-enriched tumors exhibited unique per-
turbations in citrate, creatine/phosphocreatine and 1-meth-
ylhistidine, whereas TNBC were distinguished by altered
levels of glutamine, taurine, glucose, and threonine.

Diagnostic discrimination of metabolic
markers related to molecular subtypes

The predictive value of metabolic markers for BC mo-
lecular subtypes was assessed through ROC curve anal-
ysis (Fig. 4). For the luminal A subtype, the combined
metabolite panel exhibited outstanding discrimination,
with an AUC of 0.983 (95% confidence interval (95% CI):
0.918-0.997), while the subset of subtype-specific
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metabolites also showed strong predictive performance
(AUC = 0.858; 95% CI: 0.766—0.950). For the luminal
B subtype, the combined metabolite panel similarly
demonstrated excellent discrimination, with an AUC
of 0.967 (95% CI: 0.908-0.989), while the subtype-
specific marker set achieved an AUC of 0.770 (95% CI:
0.678-0.842). Similar strong predictive performance
was observed for the HER2 (AUC = 0.970; 95% CI:
0.898-0.992) and TN (AUC = 0.846; 95% CI: 0.744—
0.912) subtypes.

Pathway analysis of metabolic markers
related to molecular subtypes

As demonstrated in Fig. 5 and Table 3, KEGG pathway
enrichment of subtype-associated metabolites revealed
glycerophospholipid metabolism to be a common altera-
tion across all BC molecular subtypes. In the hormone-
responsive luminal A and B subtypes, additional shared
pathways included glyoxylate and dicarboxylate metabo-
lism, the citrate (TCA) cycle, arginine and proline metabo-
lism, and primary bile acid biosynthesis.

We found that luminal A tumors uniquely engage mul-
tiple amino acid-related pathways — namely alanine, as-
partate and glutamate metabolism; glycine, serine and
threonine metabolism; and arginine biosynthesis — along-
side enriched glutathione metabolism as well as cysteine,
methionine and lipoic acid metabolic routes. In contrast,
the luminal B subtype was characterized by distinctive
alterations in energy-related pathways, including taurine
and hypotaurine metabolism, starch and sucrose metab-
olism, galactose metabolism, pyruvate metabolism, and
glycolysis/gluconeogenesis. For HER2-positive tumors,
the dominant metabolic signatures involved glyoxylate
and dicarboxylate metabolism, the TCA cycle, and argi-
nine and proline metabolism.

The TN subtype is characterized by involvement in pri-
mary bile acid biosynthesis; alanine, aspartate and gluta-
mate metabolism; taurine and hypotaurine metabolism;
starch and sucrose metabolism; and galactose metabolism.

Serum metabolic markers related to ER
and HER2 receptor expression

To assess how ER and HER2 receptor status shapes
the metabolic landscape in BC, we applied OPLS-DA
to the serum metabolomic profiles of patients stratified
by ER and HER2 expression. Metabolites with high VIP
scores and statistically significant differences accord-
ing to t-test were deemed differentially abundant (Fig. 6;
Table 4). With respect to ER status, glutamine, citrate,
the PC/GPC ratio, the TMAQ/taurine ratio, choline, cre-
atine/phosphocreatine, and 1-methylhistidine were consis-
tently dysregulated between ER-positive and ER-negative
groups (Fig. 7). Some metabolites were uniquely altered
by group: Taurine, glucose and creatinine were specific
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Table 4. Univariate analysis of potential serum biomarkers between different receptor status of breast cancer patients and healthy controls

ER-positive vs healthy

ER-negative vs healthy

controls controls

Metabolites SMD adjusted SMD adjusted

o0 | Gfen | oo | BEG
Valine “ _63‘6_%3 0 <0.001 (—o_ég,'z.on 0028
Lactate (0.615.,010.35) <0.001 (0.3?"/7]5'1 6) <0.001
Glutamine (_1'2‘?’%%51) <0.001 (_09‘3'5_%’1 4 0011
Citrate “ _3‘;‘9_%' 62) <0.001 (_0'9‘?"2%‘09) 0021
PC/GPC “ _5;51,‘5_?.1 5 <0.001 - _5’611'1_?)‘7 4 <0.001
TMAO/taurine “ 0 10"67%31) <0.001 (70'9’257%' 12) 0014
Taurine 1. (;;)"7_%37) <0.001 “ _62'6_%_22) 0.004
Glucose “ 2‘3‘%%52) <0.001 “ _8?{‘6_%‘20) 0.005
Choline “ 'é&'ﬁ 10 <0.001 “ .5‘91"1_%'7 6 <0.001
Creatinine (0.0%,43.78) 0.019 (—04;2,((]).61) 0337
Creatine/Pcr “ _2‘3‘%52) <0.001 - _1’2'7_?)‘3 4 <0.001
tmethylhistiine | %0 <o0or 89 <000

HER2-positive vs healthy HER2-negative vs healthy

controls controls
SMD adjusted SMD adjusted

Civaosy | 0001 ooy 0003

(0.4%,8 11,23) <0001 (0,2%,6 399) <0001
-1 .2_3'%245) <00 = 1_2 7_2 s | <0007
Cresom | OO | (gatasy | <000
ooz | 0001 By <00
1 .272,'?%.4& <0.001 (,o_gg, '5,31 9 0.004
oz | 00 o6 0z | <0001
ooz | 000108 <000
(—2.1_41,'7_21 31) <0.001 1 .6_1],.2—%,91) <0.001
CoT3070) 0183 000,079, 0016
Cras ooy | 0001 70 <0001
1 ,;61,'3739@ <0001 1 _;g '97359) <0001

ER - estrogen receptor; HER2 — human epidermal growth factor 2; SMD - standardized mean difference; 95% Cl — 95% confidence interval;
PC/GPC - phosphorylcholine/glycerophosphorylcholine; TMAO - trimethylamine oxide; Pcr — phosphocreatine; p-values were adjusted based

on Benjamini-Hochberg false discovery rate correction.

Fig. 4. Receiver operating characteristic (ROC) curves
of metabolic markers for the prediction of breast
cancer (BC) molecular subtypes; A. ROC curves

of different combinations of metabolic markers for
luminal A BC prediction; B. ROC curves of different
combinations of metabolic markers for luminal B BC
prediction; C. ROC curve of a combination of metabolic
markers for human epidermal growth factor 2 (HER2)-
related BC prediction; D. ROC curve of a combination
of metabolic markers for triple-negative breast cancer
(TNBC) prediction



Fig. 5. Metabolic pathway alterations in different breast cancer (BC) molecular subtypes. A. Metabolic pathway alterations in the luminal A subtype;
B. Metabolic pathway alterations in the luminal B subtype; C. Metabolic pathway alterations in the human epidermal growth factor 2 (HER2) subtype;
D. Metabolic pathway alterations in the triple-negative (TN) subtype; E. Venn diagram of metabolic pathway alterations in luminal A, luminal B, HER2, and TNBC
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Fig. 6. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots for 'H-NMR spectra of sera and variable importance in projection

(VIP) values of metabolites between healthy controls and breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth
factor 2 (HER2) expression statuses. A. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with ER+, R?X = 0.387,

R?Y =0.747,and Q? = 0.641; B. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with ER—, R?X = 0.575, R%Y = 0.635, and
Q?=0.532; C. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with HER2+, R*X = 0.312, R%Y = 0.796, and Q? = 0.637;
D. OPLS-DA score plot and VIP values of metabolites for healthy controls and BC patients with Her2-, R?X = 0.362, R%Y = 0.712, and Q% = 0.553

R?X - explained variance in the predictors; R?Y — explained variance in the responses; Q> - model’s predictive ability.

n
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Fig. 7. Venn map of the serum metabolic markers of breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth factor 2
(HER2) expression statuses. A. Venn map of the serum metabolic markers of BC patients who are ER positive or ER negative; B. Venn map of the serum

metabolic markers of HER2 positive or HER2 negative BC patients

to the ER-positive group, and lactate was unique to the ER-
negative group. Similarly, common metabolic changes
in the HER2-positive and HER2-negative groups, including
glutamine, citrate, PC/GPC, TMAQO/taurine, choline, cre-
atine/Pcr, and 1-methylhistidine, were observed for HER2
receptor status. Changes specific to groups were observed:
valine was specific for the HER2-positive group, and lac-
tate, taurine and glucose were specific for the HER2-neg-
ative group.

ER and HER2 receptor-related
metabolomic pathway analysis

The functions and biological pathways predicted and
significantly enriched by the KEGG pathway analysis are
presented in Fig. 8 and Table 5, which indicate the meta-
bolic pathways related to ER and HER2 receptor status
in BC patients. In ER-luminal patients, the most signifi-
cantly enriched pathways were taurine and hypotaurine
metabolism; starch and sucrose metabolism; alanine, as-
partate and glutamate metabolism; the citrate cycle; glyc-
erophospholipid metabolism; galactose metabolism; glyox-
ylate and dicarboxylate metabolism; arginine and proline
metabolism; and primary bile acid biosynthesis. Estrogen
receptor-negative patients presented similar pathway en-
richment patterns, except that taurine and hypotaurine
metabolism, starch and sucrose metabolism, galactose
metabolism, and primary cholic acid biosynthesis were
not significantly affected in this group. The top enriched
pathways for HER2-positive individuals were alanine,
aspartate and glutamate metabolism; the citrate cycle;
glycerophospholipid metabolism; glyoxylate and dicarbox-
ylate metabolism; and arginine and proline metabolism.
The HER2-negative patients included all the pathways de-
tected in the HER2-positive patients, with further enrich-
ment in taurine and hypotaurine metabolism, starch and
sucrose metabolism, galactose metabolism, and primary
bile acid biosynthesis.

Table 5. Pathway alteration in breast cancer with different ER and HER2
receptor expression

Matched
Pathway name metabolites Molecular subtype

Alanine, aspartate alnd quFamlne ER+ ER- HERD- HERD—
glutamate metabolism citrate
G\yoxyla.te and dicarboxylate otrat_e ER+ ER- HER2+ HERD—
metabolism glutamine
G\ycerophosphollpld PC/QPC ER+ ER— HER+ HERD-
metabolism choline
Citrate cycle (TCA cycle) Citrate ER+ ER- HER2+ HER2-

Arginine and proline creatine/Pcr | ER+ ER- HER2+ HER2-

metabolism

Starch and sucrose metabolism glucose ER+ HER2-
Primary bile acid biosynthesis taurine ER+ HER2-
Eg&iﬁ?ﬁ hypotaurine taurine FR+ HER2-
Galactose metabolism glucose ER+ HER2-

PC/GPC - phosphorylcholine/glycerophosphorylcholine;
Pcr - phosphocreatine; HER2 — human epidermal growth factor 2;
ER - estrogen receptor.

Discussion

Breast cancer exhibits pronounced molecular heteroge-
neity, which critically influences both therapeutic response
and prognosis. Current molecular classification hinges
on immunohistochemical assessment of ER, PR, HER2,
and Ki-67; however, intratumoral heterogeneity means that
biopsy specimens may not fully capture the complexity
of the entire tumor. Metabolomics has recently emerged
as a powerful tool for probing the tumor microenviron-
ment — an important determinant of disease progression
and treatment efficacy.?? By profiling dynamic fluctua-
tions in metabolites, this approach integrates information
on tumor biology, genetic alterations and environmental
exposures, offering a more comprehensive view of cancer
behavior than static tissue markers alone.



Fig. 8. Metabolic pathway alterations in molecular breast cancer (BC) patients with different estrogen receptor (ER) and human epidermal growth factor 2
(HER2) expression statuses. A. Metabolic pathway alterations in ER-positive BC patients; B. Metabolic pathway alterations in ER-negative BC patients;

C. Metabolic pathway alterations in HER2-positive BC patients; D. Metabolic pathway alterations in HER2-negative BC patients; E. Venn diagram of metabolic
pathway alterations in molecular BC patients with different ER and HER2 expression statuses
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In this study, we investigated the serum metabolic
profiles of 4 molecular subtypes of BC patients and com-
pared them with those of healthy controls, confirming
that the identified metabolic signatures can discriminate
among subtypes with high predictive performance. Re-
ceiver operating characteristic curve analyses confirmed
that these serum metabolic signatures exhibited excellent
discriminatory and predictive performance for molecular
typing. Moreover, we discovered metabolic markers linked
to ER and HER2 receptor status, revealing varying meta-
bolic profiles between the receptor-positive and receptor-
negative cohorts. Pathways related to energy metabolism,
amino acid metabolism and phospholipid metabolism were
significantly different in terms of the metabolic heteroge-
neity of each BC subtype.

The 4 molecular subtypes presented different metabolite
compositions. Distinct metabolic signatures were identi-
fied for each subtype as promising biomarkers. Previous
studies have shown that serum levels of amino acids in less
aggressive luminal A cancers are lower than those in more
aggressive TNBCs.2>2* Our results corroborate these re-
ports, as the luminal A-specific metabolic alterations
mainly included amino acids, indicating subtype-specific
amino acid metabolism.

Importantly, excessive acetate accumulation was specifi-
cally observed in luminal B patients, suggesting a distur-
bance in the level of acetate-acetyl-CoA conversion. All
4 subtypes had decreased glucose levels and increased lac-
tate levels, with HER2-positive tumors having the greatest
increase in lactate. This finding is consistent with our re-
cent work showing an increased Warburg effect in HER2-
positive BC cells,?>2¢ emphasizing the metabolic hetero-
geneity between molecular subtypes.

Common alterations in phospholipid metabolism, par-
ticularly with respect to PC/GPC and choline, were pres-
ent across all subtypes. Other studies have shown similar
phenomena in several types of cancer, implying that phos-
pholipid metabolism plays a vital role in cancer develop-
ment.?-?? Notably, BC cells showed reduced "13C-labeled
choline and phosphocholine levels relative to normal mam-
mary epithelial cells, suggesting an enhanced metabolic
flux from membrane phosphatidylcholine toward free
choline and phosphate in malignancy.*°

In luminal BC, we identified 7 metabolic pathways that
were uniquely and highly enriched: glycine, serine and
threonine metabolism; arginine biosynthesis; glutathione
metabolism; cysteine and methionine metabolism; lipoic
acid metabolism; pyruvate metabolism; and glycolysis/
gluconeogenesis.

Tumors stratified by ER status (luminal vs non-luminal)
exhibited distinct metabolic signatures, with significant
enrichment in pathways such as starch and sucrose me-
tabolism, protocholic acid biosynthesis, taurine and hypo-
taurine metabolism, and galactose metabolism.

However, hormone receptor-positive BC cells are
typically more differentiated and exhibit higher levels

M. Xu et al. Metabolic markers in breast cancer via NMR

of proliferation-associated metabolites than hormone re-
ceptor-negative TNBC cells.'~3* We also identified distinct
metabolite accumulation patterns in HER2-positive BC
patients compared to healthy controls, implicating path-
ways such as glycerophospholipid metabolism, glyoxylate
and dicarboxylate metabolism, the TCA cycle, and argi-
nine and proline metabolism. Notably, these same path-
ways were enriched in luminal B tumors, likely reflecting
the subset of luminal B cancers that co-express HER2 and
thus share similar metabolic phenotypes.3*

The serum metabolic characteristics of these molecu-
lar subtypes may provide a noninvasive diagnostic tool
to complement immunohistochemical typing, especially
when tumor tissue is limited or heterogeneous. These find-
ings indicate that our subtype-specific metabolic signa-
ture can be used for targeted therapy development, e.g.,
by targeting amino acid metabolism in luminal subtypes
and inhibiting the glycolysis pathway in HER2-positive
patients. Furthermore, longitudinal profiling of these
metabolic biomarkers may enable real-time monitoring
of therapeutic response and disease trajectory, facilitating
the early detection of emerging drug resistance or tumor
recurrence. Markers correlated with ER and HER2 status
may also predict responsiveness to endocrine or HER2-
targeted therapies, enabling more personalized treatment
strategies.

Interestingly, we observed a strong overlap between
the metabolic pathways distinguishing HER2-positive
from HER2-negative patients and those differentiating
ER-positive from ER-negative cases; notably, these shared
pathways include starch and sucrose metabolism, primary
bile acid biosynthesis, taurine and hypotaurine metabo-
lism, and galactose metabolism. This novel finding indi-
cates potential crosstalk between receptor signaling and
metabolic regulation,® which needs to be further investi-
gated at the molecular level.

Limitations

Despite these promising results, several limitations war-
rant consideration. First, our relatively small, single-center
cohort limits statistical power and the generalizability
of our findings to broader patient populations. Second,
the cross-sectional design prevents us from drawing causal
inferences about how metabolic alterations evolve with
disease progression or in response to therapy; longitudinal
sampling would be required to capture these dynamics.
Third, although we detected a wide range of metabolites,
current analytical platforms may have missed other rel-
evant compounds, and the high cost of metabolomic assays
poses practical challenges for large-scale validation. Fi-
nally, unmeasured confounders, such as variations in diet,
concomitant medications and comorbid conditions, were
not fully controlled and could have influenced the ob-
served metabolic signatures. Future studies should ad-
dress these issues by enrolling larger, multicenter cohorts,
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incorporating longitudinal designs and standardizing pre-
analytical variables to confirm and extend our findings.

Conclusions

In this study, we utilized 'H NMR metabolomics to iden-
tify serum metabolic signatures in patients with various
molecular subtypes of BC. Through comprehensive me-
tabolomic profiling, we explored the distinct metabolic
features and pathways linked to each subtype, as well
as the relationship between serum metabolites and the ex-
pression levels of ER and HER2 receptors. Our findings
contribute to a deeper understanding of subtype-specific
metabolic reprogramming in BC and may help uncover
novel biomarkers for molecular-based classification.

Our analysis identified distinct serum metabolomic
signatures corresponding to BC molecular subtypes and
receptor profiles, demonstrating metabolomics’ prom-
ise as a noninvasive tool for tumor classification. These
subtype-specific metabolic patterns offer complemen-
tary insights to conventional diagnostics and could guide
the personalization of therapy. The markers we describe
warrant further validation for enhancing patient stratifica-
tion and optimizing treatment selection.

The next steps toward clinical translation include validat-
ing these metabolic markers in larger, multicenter cohorts,
establishing population-specific cutoff values, and assess-
ing their ability to predict treatment response in prospec-
tive clinical trials. Ultimately, metabolic profiling could
offer powerful, noninvasive insights for BC diagnosis, real-
time treatment monitoring, and the identification of novel
therapeutic targets, thereby enriching patient care.
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