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Abstract
Background. Off-pump coronary artery bypass grafting-associated acute kidney injury (OPCAB-AKI) is re-
lated to 30-day perioperative mortality. Existing mathematical models cannot be applied to help clinicians 
make early diagnosis and intervention decisions.

Objectives. This study used an interpretable machine learning method to establish and screen an optimized 
OPCAB-AKI prediction model.

Materials and methods. Clinical data of 1110 patients who underwent OPCAB in the Department of Cardiac 
Surgery of General Hospital of Northern Theater Command (Shenyang, China) from January 2018 to December 
2020 were collected retrospectively. Four machine learning models were used, including logistic regression 
(LR), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost). The SHapley Additive 
exPlanation (SHAP) tool was used for explanatory analysis of the black-box model. The mean absolute value 
of the characteristic SHAP parameter was defined and sorted. The correlation between the characteristic 
parameters and OPCAB-AKI was determined based on the SHAP value. A quantitative analysis of a single 
characteristic and an interaction analysis of multiple characteristics were carried out for the main risk factors.

Results. The RF prediction model had the best performance, with an area under the curve (AUC) of 0.90, 
a precision rate of 0.80, an accuracy rate of 0.83, a recall rate of 0.74, and an F1 score of 0.78 for positive 
samples. The interpretation analysis of the SHAP model results showed that intraoperative urine volume 
contributed to the greatest extent to the RF model, and other parameters included intraoperative sufentanil 
dosage, intraoperative dexmedetomidine dosage, cyclic variation coefficient during the induction period, 
intraoperative hypotension duration, age, preoperative baseline serum creatinine, body mass index (BMI), 
and Acute Physiology, Age and Chronic Health Evaluation (APACHE) II score.

Conclusions. The model constructed by the RF ensemble learning algorithm predicted OPCAB-AKI, and 
indicators such as intraoperative urine volume were closely related to OPCAB-AKI.
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Background

Cardiac surgery-associated acute kidney injury (CSA-
AKI) incidence is approx. 22–30%, of which 1% of cases 
must be treated with emergency dialysis.1 Off-pump coro-
nary bypass grafting (OPCAB) avoids the cardiopulmo-
nary bypass risk factors of non-physiological perfusion 
and ischemia-reperfusion injury. However, circulatory 
fluctuations caused by surgical procedures can still cause 
cardiac and renal insufficiency, while low cardiac out-
put syndrome further increases the risk of OPCAB-AKI. 
A previous study demonstrated that transient minor se-
rum creatinine (sCr) elevation after cardiac surgery is as-
sociated with 30-day mortality.2 Patients with stage I AKI 
have an increased risk of death by 56%, and patients with 
stage II or III AKI have a mortality risk of up to 3.5 times 
higher that in the general population. Even after curing 
CSA-AKI symptoms, the risk of progression to chronic 
kidney disease (CKD) and death remains increased.3 Early 
intervention could prevent AKI from progressing to a se-
vere stage, which is crucial for reducing perioperative 
mortality.

Current mathematical models used to predict CSA-AKI 
are regression models based on preoperative data, includ-
ing demographic variables, such as the European System 
for Cardiac Operative Risk Evaluation (EuroSCORE II) 
published in 2012, the Society of Thoracic Surgeons Score 
(STS score)4 published in 2008, and the Sino-System for 
Coronary Operative Risk Evaluation (SinoSCORE) pub-
lished in 2009 in China.5 A common limitation of these 
models is that they only include the analysis of a few in-
traoperative risk factors. Since these factors correspond 
to multiple surgical types or complications, their single-
risk prediction ability has to be improved. Clinicians must 
be able to understand and interpret the correlation be-
tween risk factors based on the accurate prediction of AKI 
risk to make correct decisions. However, achieving good 
predictability and interpretability is challenging because 
the  computational process of  most models is  almost 
a “black-box” for researchers. Machine learning combined 
with SHapley Additive exPlanation (SHAP) could explain 
the output results of the prediction model, thereby solving 
this issue.6–9

Objectives

This study combined preoperative features with various 
intraoperative clinical parameters, such as decisive sur-
gical decisions and hemodynamic fluctuations. The aim 
of the study was to establish a risk prediction model in-
cluding intraoperative features set as the primary objec-
tive variables, with OPCAB-AKI set as the sole outcome. 
The research hypothesized that the constructed OPCAB-
AKI prediction model based on machine learning exhibits 

good predictive performance, and the SHAP explanatory 
toolkit used to analyze the weight and clinical significance 
of single or multiple risk factors may be helpful for an ac-
curate early prediction of OPCAB-AKI and precise clinical 
decision-making.

Materials and methods

Data collection

The Ethics Committee of the General Hospital of North-
ern Theater Command (Shenyang, China) approved  the ret-
rospective data analysis (approval No. k (2020) 01) and 
exempted it  from informed consent. The clinical data 
of 1110 patients undergoing elective OPCAB in the above 
hospital from January 2018 to December 2020 were ret-
rospectively collected on the Do-Care automatic anes-
thesia recording system and electronic medical record 
system (EMRS). Figure 1 illustrates the data collection 
process. Levels of sCr measured within the 24 h before 
surgery defined as the baseline. The single outcome was 
AKI within 7 days post-surgery. The diagnostic criteria 
were defined according to the Kidney Disease: Improving 
Global Outcomes (KDIGO) 2012 guidelines: 1) increased 
sCr level ≥26.5 μmol/L (≥0.3 mg/dL) within 48 h, or 2) sCr 
level increased >1.5 times compared to the baseline value 
within 7 days, or 3) urine volume <0.5 mL/kg/h10 for 6 con-
secutive hours. The patients were divided into AKI-neg-
ative and AKI-positive groups according to whether AKI 
occurred after the operation.

Fig. 1. Flowchart of data collection

OPCAB – off-pump coronary artery bypass grafting; AKI – acute kidney injury.

1376 cases who underwent OPCAB
from January 2018 to December 2020

Excluded:
• <18 years old
• Non-isolated OPCAB
• Missing data of creatinine value
   (pre or post OPCAB)
• With chronic kidney disease
• End-stage renal disease

1110 cases were included
in the analysis

Training set (70%)
777 cases
• AKI count (507)
• No-AKI count (270)

Test set (30%)
333 cases
• AKI count (135)
• No-AKI count (198)
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Statistical hypothesis testing and 
characteristic parameter selection

According to the EuroSCORE II value and the results 
of previous studies on CSA-AKI risk factors,11–14 87 char-
acteristic parameters were included and evaluated. Supple-
mentary Table 1 provides a detailed description of the dis-
tribution of all parameters in different groups and datasets. 
Variance inflation factor (VIF) and the Box–Tidwell test 
verified predictors. Predictors of linear relationships with 
logit functions of outcomes and collinearity predictors 
were excluded. The remaining predictors were used to es-
tablish a logistic regression model, with 3 methods imple-
mented to select feature predictors in the development 
cohort. First, predictors with p < 0.05 in the univariate 
analysis were chosen. Second, the least absolute shrinkage 
and selection operator (LASSO) regularization algorithm 
selected potential predictors with non-zero coefficients. 
Third, the random forest recursive feature elimination 
(RF-RFE) algorithm combined with backward stepwise 
selection produced a compact model. The χ2 test was used 
to analyze categorical variables. The assessment of nu-
merical variables used a Mann–Whitney U rank-sum test 
to conduct a univariate analysis of sample characteristics. 
The prediction performance of traditional logistic regres-
sion and machine learning models were then compared.

Data preprocessing

Treatment of vital signs in a perioperative time series

Two time windows were selected for the study: 1. An-
esthesia induction duration (t1) from the  time when 
the patient entered the operation room to establish vi-
tal signs monitoring to 10 min after anesthesia induc-
tion; the assimilated indexes included heart rate (HR) 
and mean arterial pressure (MAP); 2. Operation duration 
(t2) from skin incision to intravenous infusion of prot-
amine; the collection indexes included HR, MAP and 
mean pulmonary artery pressure (mPAP). A polynomial 
curve function Y(X,W) = W0+W1X+W2X2+W3X3+...+W
MXM was used to fit the continuous vital signs of patients 
(the collection interval was 1 min). In the formula, X was 
defined as the timepoint between the 2 time windows 
(t1 and t2) from the 1st minute till minute X, while Y speci-
fied the patient’s vital signs (HR/MAP/mPAP) at the cor-
responding time point, and W was a coefficient of time-
point X in the polynomial function. The absolute values 
of each coefficient (W) of  the  function were summed 
to obtain 5 characteristic parameters (Supplementary 
Fig. 1): the coefficient of variation of HR during anesthe-
sia induction, the coefficient of variation of MAP during 
anesthesia induction, the coefficient of variation of HR 
during the operation, the coefficient of variation of MAP 
during the  operation, and the  coefficient of  variation 
of mPAP during the operation.

Acute hypotensive episodes (AHEs)15 and hypotension 
duration16 were defined and estimated according to the rele-
vant literature: the total duration of MAP < 65 mm Hg from 
the moment of entering the operation room for establishing 
circulation monitoring to leaving the operating room and 
acute hypotension incidence (MAP < 65 mm Hg for >5 min).

Handling missing values

For characteristic parameters with a missing ratio <10%, 
missing value interpolation did not effectuate any bias 
on the results.17 Deep learning technology was used to fill 
in the missing values.18 Ten parameters lacked values, and 
3 had ≥10% of values lacking, which were excluded from 
the models (Supplementary Table 2).

Characteristic parameter determination

After handling missing values, VIF and Box–Tidwell test 
were used to verify the remaining 84 predictors, resulting 
in the removal of 5 predictors of linear relationships or collin-
earity (Supplementary Table 3). The remaining 79 predictors 
were used to establish the logistic regression model. One-way 
analysis of variance (ANOVA) and Recursive Feature Elimi-
nation and LASSO regression were applied to select feature 
predictors in the development cohort. Finally, 39 predictors 
were selected to establish machine learning models (Supple-
mentary Fig. 1 and Supplementary Table 4), and 21 statisti-
cally significant clinical characteristics were tested (p < 0.05).

Machine learning model establishment

This study examined a small sample high-dimensional 
dataset using 4 common machine learning algorithms si-
multaneously, including logistic regression (LR), classifica-
tion decision tree (DT), RF, and eXtreme Gradient Boost-
ing (XGBoost). The parameters (options activated) for each 
analysis are listed in Supplementary Table 5. The sample 
size of the dataset conformed to the rule of “10 events 
per variable” for characteristic parameters, which meets 
the sample size demands of machine learning. The train_
test_split tool in the sklearn module randomly divided 
the preprocessed data into training and test sets at a ratio 
of 7:3, with 70% of the training sets included in the train-
ing model database. Cross-validation reduced the over-
fitting to some extent and allowed for obtaining critical 
information from the limited data. The training set data 
were randomly divided into 5 equal parts using the five-
fold cross-validation method, with 4 used for the training 
model and 1 for model verification. The cycle was repeated 
5 times. The model parameters were adjusted according 
to the area under the receiver operating characteristic 
(ROC) curve (AUC) to prevent overfitting of the model-
ing process, and the remaining 30% of the test sets were 
used for internal verification to evaluate the performance 
of the trained models on the new data.
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Model performance evaluation

Accuracy, recall and precision rates evaluated the pre-
diction results. The F1 score was used to balance the model 
precision and recall, and to  evaluate the  performance 
of the binary model. The F1 score ranges from 0 to 1, with 
larger values indicating better results. The ROC curve and 
AUC were also used to evaluate model performance, and 
the calibration curve was used to represent the accuracy 
of the model prediction probability.

Interpretive analysis

The interpretation analysis of the black-box model with 
the best predictive performance was done using the Python 
SHAP model interpretation package. Based on common 
theory and local interpretation, SHAP is a classic post-hoc 
interpretation framework that provides values to estimate 
the contribution of each characteristic. A SHAP value de-
scribes the weight or importance of a specific characteristic 
in predicting a particular data point by the model, which 
is the core of the parameter. Compared to traditional char-
acteristic importance methods, SHAP has better consis-
tency and presents a positive/negative correlation of each 
predictor relative to the target variable, which can be used 
for local and global interpretation. For local interpretabil-
ity, each characteristic had its own set of Shapley values 
that might explain and quantify the contribution of each 
characteristic of each sample to the prediction, increas-
ing the transparency and allowing clinicians to analyze 
the reliability of the prediction model. The global interpre-
tation could be obtained based on the mean Shapley value 
of the corresponding variables in all samples as the signifi-
cance value of the specific characteristic.

Results

Dataset description

After preprocessing the original electronic medical re-
cord data, 1110 samples were divided into AKI-positive 
(405 cases) and AKI-negative (705 cases) groups, accord-
ing to whether AKI occurred postoperatively. The pa-
tients in the positive group had a higher mean age and 
a prolonged mean duration of intraoperative hypotension 
(MAP < 65 mm Hg). The incidence of abnormal preop-
erative sCr, preoperative electrocardiogram ventricular 
premature beat, intraoperative sudden atrial fibrillation, 
ventricular fibrillation, intraoperative use of  intra-aor-
tic balloon counterpulsation-assisted circulation, and 
intraoperative acute hypotension (MAP  <  65  mm  Hg 
for >5 min) was higher in the AKI-positive group than 
in the AKI-negative group. Dexmedetomidine dosage and 
urine volume were lower in the AKI-positive group than 
in the AKI-negative group.

Model prediction results  
and performance comparison

The  test set (n  =  333) results showed that the  AUC 
of the RF model for positive samples (0.9, 95% confidence 
interval (95% CI): 0.86–0.94) was better than that for 
the other model groups (LR-AUC: 0.73, 95% CI: 0.67–0.79; 
DT-AUC: 0.75, 95% CI: 0.69–0.81; XGBoost-AUC: 0.86, 
95% CI: 0.82–0.90) (Supplementary Table 6). However, 
the recall rate (0.74) and F1 score (0.78) performance in-
dicators of the RF group did not differ significantly from 
the other integration algorithms (Supplementary Table 6 
and Fig. 2A), and the  calibration curve indicated that 
the prediction probability of the RF model was rather ac-
curate (Fig. 2B). Compared with the traditional statistical 
binary logistic regression model (positive prediction ac-
curacy: 0.71; AUC: 0.73, 95% CI: 0.70–0.76), the RF model 
and other integration algorithms showed better predictive 
ability for OPCAB-AKI (Fig. 3).

Interpretative analysis of the random 
forest model

The ranking results of the characteristic parameters 
showed that intraoperative urine volume contributed 
maximally to the RF model, followed by intraoperative 
sufentanil dosage, intraoperative dexmedetomidine dos-
age, the coefficient of variation of circulation during the in-
duction period, the duration of intraoperative hypotension, 
age, preoperative baseline sCr, body mass index (BMI), 
and Acute Physiology, Age and Chronic Health Evaluation 
(APACHE) II scores (Fig. 4A).

Further analysis established a positive correlation be-
tween the coefficient of variation of circulation during 
the induction period, the dosage of sufentanil, duration 
of intraoperative hypotension, preoperative baseline sCr, 
APACHE II score, age, and postoperative AKI occurrence. 
As such, the higher the standard values corresponding 
to these characteristics, the greater the possibility of AKI 
in the model samples. On the other hand, intraoperative 
urine volume and intraoperative dexmedetomidine dosage 
correlated negatively with OPCAB-AKI incidence (Fig. 4B).

In the SHAP summary of the top 20 characteristics, 
the ordinate was characteristic and the abscissa was 
the SHAP value, sorted according to the mean absolute 
characteristic parameter value. The higher the SHAP 
value of  the  characteristic, the  greater the  OPCAB-
AKI incidence. Each line represented a characteristic, 
a point represented a sample, and the color represented 
the  characteristic value (red was high and blue was 
low). The positive/negative correlation between each 
characteristic and OPCAB-AKI was determined based 
on the distribution of the actual characteristic value and 
the SHAP value.

The  SHAP value was used to  analyze how the  top-
ranked characteristics in the RF black-box model affected 
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the  prediction results by  comparing and quantifying 
the linear correlation between the SHAP values of each 
characteristic and the risk outcomes. The results showed 
that the OPCAB-AKI risk significantly increased when 
3  consecutive characteristics reached specific thresh-
olds: age  >55  years, APACHE II score  >19  points and 
BMI > 28 kg/m2 (Fig. 5).

The SHAP dependency analysis revealed the importance 
and direction of the influence of the 2 pairs of characteris-
tics on the model output, and their complex nonlinear ef-
fects were obtained and described. The results showed that 
the risk of OPCAB-AKI increased significantly with pro-
longed intraoperative hypotension duration and decreased 
intraoperative urine volume. Accordingly, the OPCAB-
AKI risk was low at a short intraoperative hypotension 
duration (SHAP < 0) and high intraoperative urine volume 
(approx. 700 mL) (Fig. 6A). A high dexmedetomidine dose 

was positively associated with increased intraoperative 
urine volume, which corresponded to a low risk of OPCAB-
AKI (Fig. 6B).

Discussion

This retrospective cohort study employed a machine 
learning method to establish a risk prediction model for 
OPCAB-AKI using a small sample (1110 patients) of peri-
operative data collected from a single center over the course 
of 3 years. The results showed that the prediction effect 
of the integrated machine learning model was better than 
that of a traditional LR model, and the RF model showed 
the best prediction performance after integrating the in-
traoperative hemodynamic parameters (AUC = 0.9, 95% 
CI: 0.86–0.94). This helped the clinicians make an early 

Fig. 3. Performance comparison between the random forest (RF) and binary logistic regression models

ROC – receiver operating characteristic; AUC – area under the curve.

Fig. 2. Machine learning model performance

AUC – area under the curve; RF – random forest; XGBoost – extreme gradient boosting; LR – logistic regression; DT – decision tree.
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prediction and choose an appropriate AKI intervention 
before the end of surgery.

Among the screened OPCAB-AKI influencing factors, 
the top 5 items (intraoperative urine volume, intraoperative 
sufentanil dosage, intraoperative dexmedetomidine dos-
age, the coefficient of variation of MAP during the induc-
tion period, and intraoperative hypotension duration) are 
the intraoperative indicators that are not a primary concern 
in the classical prediction models, and the remaining items, 
such as age, preoperative baseline sCr, BMI, and APACHE 
II score, were the known CSA-AKI influencing factors.19 
A single-center cohort study of patients undergoing any sur-
gery showed that 40% of them were assessed as low risk for 
AKI by classical models but reassessed as high risk by ma-
chine learning models after incorporating intraoperative 
factors.20 Compared to classical models, the results of this 
study highlight the impact of acute intraoperative patho-
physiological reactions on renal function and the potential 
benefits of close monitoring and timely intervention.21

Intraoperative urine volume (with a  mean SHAP 
value weight of 2.87%) was a major influencing factor 
in the OPCAB-AKI prediction model established in this 

study. Previous studies on CSA-AKI have shown that urine 
volume predicts AKI after cardiopulmonary bypass sur-
gery.22 This phenomenon is consistent with the results 
of the present study, suggesting that real-time monitoring 
and maintenance of adequate intraoperative urine volume 
could protect renal function in OPCAB patients.23

Two other intraoperative influencing factors in the model 
were the coefficient of variation of circulation during in-
duction and intraoperative hypotension duration. Some 
studies have shown that the risk of AKI is independently 
associated with intraoperative hypotension,24,25 and he-
modynamic fluctuation is a major risk factor for inducing 
postoperative AKI.26–28 Perioperative supportive care for 
MAP could reduce the risk of postoperative complications 
such as AKI.29 Off-pump coronary artery bypass graft-
ing has unique hemodynamic characteristics and is prone 
to severe hemodynamic fluctuations during specific pe-
riods, such as anesthesia induction, fixation and com-
pression of coronary arteries.30 Since the blood pressure 
or HR at a single timepoint could not reflect the signifi-
cance of the patient’s hemodynamic fluctuations over time, 
this study used a polynomial higher-order function fitting 

Fig. 4. Importance matrix diagram of the random forest model

MAP1 – coefficient of variation of mean arterial pressure during the induction period; BMI – body mass index; APACHE – Acute Physiology, Age and Chronic 
Health Evaluation; MAP2 – coefficient of variation of mean arterial pressure during the coronary artery bypass period; P2 – coefficient of variation of heart 
rate (HR) during the coronary artery bypass period; P1 – coefficient of variation of HR during the induction; T2 – operation time; PCI – percutaneous coronary 
intervention; T1 – skin incision-bypass time; mPAP – coefficient of variation of mean pulmonary arterial pressure during the coronary artery bypass period.
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Fig. 6. Multi-characteristic interaction effects. The X-axis represents the actual value of the characteristic, the Y-axis is the corresponding SHapley 
Additive exPlanation (SHAP) value, and the blue to red colors on the right axis represent the size of the characteristic value (red was high and blue was 
low). A. Effects of intraoperative urine volume and intraoperative hypotension duration on model output; B. Effects of intraoperative urine volume and 
intraoperative dexmedetomidine dosage on model output

Fig. 5. Single characteristic quantitative analysis. The X-axis represents the actual value of the characteristic, and the Y-axis the corresponding SHapley 
Additive exPlanation (SHAP) value. When SHAP was >0, off-pump coronary artery bypass grafting-associated acute kidney injury (OPCAB-AKI) risk increased.

MAP1 – the coefficient of variation of mean arterial pressure during the induction period; BMI – body mass index; APACHE – Acute Physiology, Age and 
Chronic Health Evaluation.
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curve to represent continuous intraoperative circulation 
indicators. The results suggest that intraoperative hemody-
namic fluctuations represented by the coefficient of varia-
tion of circulation can accurately predict OPCAB-AKI.

The impact of general anesthetics on postoperative AKI 
was rarely considered in previous models. In this study, 
dexmedetomidine was shown to be a critical influencing 
factor (negatively correlated) of OPCAB-AKI. A random-
ized controlled trial by Zhai et al. demonstrated that dex-
medetomidine reduced CSA-AKI incidence and severity 
in patients undergoing cardiac surgery.31 Another meta-
analysis concluded that dexmedetomidine infusion could 
be used as a preventive strategy for CSA-AKI. However, 
they did not specify the optimal dose or duration of intra-
venous dexmedetomidine infusion.32

The model established in this study suggested that an ex-
cessive intraoperative sufentanil dosage might be a risk 
factor for inducing OPCAB-AKI. Based on the concept 
of Enhanced Recovery After Surgery (ERAS®), low-opioid 
anesthesia regimens have been widely accepted by clini-
cians.33,34 Although there was no evidence that low-opioid 
anesthesia reduced the risk of CSA-AKI or OPCAB-AKI, 
the results of the present study suggest that reducing intra-
operative opioid dosage exerts a protective effect on the re-
nal function of OPCAB patients.

Several studies have identified a  high BMI and ad-
vanced age as major OPCAB-AKI risk factors.35 Moreover, 
the APACHE II score is prognostic for critically ill patients 
immediately after admission to  the  intensive care unit 
(ICU), and was used in this study to replace laboratory in-
dicators, such as hemoglobin, to predict postoperative AKI 
risk. After conducting the interpretive analysis of the black-
box model with the use of the classic SHAP tool, the present 
study identified 3 continuous characteristics, including age, 
APACHE II score and BMI, that affected the critical thresh-
old of the RF model for predicting the risk of OPCAB-AKI. 
These factors helped the clinicians to understand the influ-
ence of characteristics on the prediction outcome.

Although novel serum and urine biomarkers can predict 
AKI,36 there are disadvantages to expensive tests, repeated 
tests during diagnosis and increased hospitalization costs. 
The main risk factors involved in this research model were 
routine items that were easy to collect and did not increase 
the medical burden.

The  interaction analysis showed mutual influences 
among several OPCAB-AKI factors. For example, high in-
traoperative dexmedetomidine dosage and high intraoper-
ative urine volume were associated with a low risk of post-
operative AKI. Although the results cannot determine 
causality among factors, they suggested putative changing 
trends in specific environments, which were not captured 
by most analytical models. Combining this information 
with the clinical experience of the doctors aided in making 
individualized clinical decisions at an early stage.

The advantage of this study was that five-fold cross-
validation was used to construct a stable performance 

model. Predictive variables used in the study are readily 
available in clinical practice, ensuring model applicability. 
The model exhibits clinical interpretability and predictive 
reliability, which could help doctors understand the inter-
action between variables and targets as well as between 
2 variables.

Limitations

The limitations of this study include its retrospective 
design, a small sample of subjects from the same tertiary 
general hospital, and lack of evaluation of different AKI 
stages. As such, the results require further external vali-
dation before they can be generalized, and additional pro-
spective trials are needed to assess their clinical utility.

The major characteristics and inflection points found 
in this study could be used as early signs of OPCAB-AKI 
risk. However, whether these could act as a reference for 
clinical diagnosis in the recommended range needs further 
substantiation. If found to be externally valid, clinicians 
might incorporate the available web-based application into 
clinical practice to aid decision-making and optimize pre-
operative prevention efforts.

Conclusions

The ensemble learning algorithm represented by RF 
predicted OPCAB-AKI. Intraoperative urine volume, 
circulatory fluctuation during the induction period, in-
traoperative dexmedetomidine dosage, intraoperative hy-
potension duration, preoperative baseline sCr, APACHE 
II score, BMI, and age were the main factors influencing 
OPCAB-AKI. An explanatory framework increased model 
transparency, allowing clinicians to analyze the reliability 
of the predictive models.

Data availability statement

The datasets used and/or analyzed during the current 
study are available from the corresponding author upon 
reasonable request.

Supplementary data

The supplementary materials are available at https://
doi.org/10.5281/zenodo.8128783. The package contains 
the following files:

Supplementary Fig. 1. Polynomial curve fitting of vital 
signs.

Supplementary Table 1. Distribution of each character-
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